scholarly journals Hybrid Neural Network – Variational Data Assimilation algorithm to infer river discharges from SWOT-like data

Author(s):  
Kevin Larnier ◽  
Jerome Monnier

Abstract. A new algorithm to estimate river discharges from altimetry measurements only is designed. A first estimation is obtained by an artificial neural network trained from the altimetry large scale water surface measurements plus drainage area information. The combination of this purely data-based estimation and a dedicated algebraic flow model provides a first physically-consistent estimation. The latter is next employed as the first guess of an advanced variational data assimilation formulation. The final estimation is highly accurate for rivers presenting features within the learning partition; for rivers far outside the learning partition, the space-time variations of discharge remain accurately approximated however the global estimation presents a potential bias. Indeed, it is shown that if the estimation is based on the hydrodynamics models only, the inverse problem may be well-defined but up to a bias only (the bias scales the global estimation). This bias is removed thanks to the ANN but for rivers in the learning partition only. For rivers outside the learning partition, any mean value (eg. annual, seasonal) enables to remove the bias. Finally, the present hybrid and hierarchical inversion strategy seems to provide much more accurate estimations compared to the state-of-the-art for the considered 29 heterogeneous river portions.

2007 ◽  
Vol 64 (11) ◽  
pp. 3766-3784 ◽  
Author(s):  
Philippe Lopez

Abstract This paper first reviews the current status, issues, and limitations of the parameterizations of atmospheric large-scale and convective moist processes that are used in numerical weather prediction and climate general circulation models. Both large-scale (resolved) and convective (subgrid scale) moist processes are dealt with. Then, the general question of the inclusion of diabatic processes in variational data assimilation systems is addressed. The focus is put on linearity and resolution issues, the specification of model and observation error statistics, the formulation of the control vector, and the problems specific to the assimilation of observations directly affected by clouds and precipitation.


2015 ◽  
Vol 2 (2) ◽  
pp. 513-536 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.


2021 ◽  
Author(s):  
Andrea Storto ◽  
Giovanni De Magistris ◽  
Silvia Falchetti ◽  
Paolo Oddo

<p>Variational data assimilation requires implementing the tangent-linear and adjoint (TA/AD) version of any operator. This intrinsically hampers the use of complicated observations. Here, we assess a new data-driven approach to assimilate acoustic underwater propagation measurements (Transmission Loss, TL) into a regional ocean forecasting system. TL measurements depend on the underlying sound speed fields, mostly temperature, and their inversion would require heavy coding of the TA/AD of an acoustic underwater propagation model. In this study, the non-linear version of the acoustic model is applied to an ensemble of perturbed oceanic conditions. TL outputs are used to formulate both a statistical linear operator based on Canonical Correlation Analysis (CCA), and a neural network-based (NN) operator. For the latter, two linearization strategies are compared, the best performing one relying on reverse-mode automatic differentiation. The new observation operator is applied in data assimilation experiments over the Ligurian Sea (Mediterranean Sea), using the Observing System Simulation Experiments (OSSE) methodology to assess the impact of TL observations onto oceanic fields. TL observations are extracted from a nature run with perturbed surface boundary conditions and stochastic ocean physics. Sensitivity analysis and forecast experiments show not only the highest accuracy of the NN reconstruction of TL when compared to CCA, but also that its use in the assimilation of TL observations is able to significantly improve the upper ocean forecast skills. The use of the NN observation operator is computationally affordable, and its general formulation appears promising for the adjoint-free assimilation of any remote sensing observing network.</p>


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Peter Korn

AbstractFor the primitive equations of large-scale atmosphere and ocean dynamics, we study the problem of determining by means of a variational data assimilation algorithm initial conditions that generate strong solutions which minimize the distance to a given set of time-distributed observations. We suggest a modification of the adjoint algorithm whose novel elements is to use norms in the variational cost functional that reflects the $$H^1$$ H 1 -regularity of strong solutions of the primitive equations. For such a cost functional, we prove the existence of minima and a first-order adjoint condition for strong solutions that provides the basis for computing these minima. We prove the local convergence of a gradient-based descent algorithm to optimal initial conditions using the second-order adjoint primitive equations. The algorithmic modifications due to the $$H^1$$ H 1 -norms are straightforwardly to implement into a variational algorithm that employs the standard $$L^2$$ L 2 -metrics.


2014 ◽  
Vol 142 (1) ◽  
pp. 414-433 ◽  
Author(s):  
Daniel Holdaway ◽  
Ronald Errico ◽  
Ronald Gelaro ◽  
Jong G. Kim

Abstract Inclusion of moist physics in the linearized version of a weather forecast model is beneficial in terms of variational data assimilation. Further, it improves the capability of important tools, such as adjoint-based observation impacts and sensitivity studies. A linearized version of the relaxed Arakawa–Schubert (RAS) convection scheme has been developed and tested in NASA’s Goddard Earth Observing System data assimilation tools. A previous study of the RAS scheme showed it to exhibit reasonable linearity and stability. This motivates the development of a linearization of a near-exact version of the RAS scheme. Linearized large-scale condensation is included through simple conversion of supersaturation into precipitation. The linearization of moist physics is validated against the full nonlinear model for 6- and 24-h intervals, relevant to variational data assimilation and observation impacts, respectively. For a small number of profiles, sudden large growth in the perturbation trajectory is encountered. Efficient filtering of these profiles is achieved by diagnosis of steep gradients in a reduced version of the operator of the tangent linear model. With filtering turned on, the inclusion of linearized moist physics increases the correlation between the nonlinear perturbation trajectory and the linear approximation of the perturbation trajectory. A month-long observation impact experiment is performed and the effect of including moist physics on the impacts is discussed. Impacts from moist-sensitive instruments and channels are increased. The effect of including moist physics is examined for adjoint sensitivity studies. A case study examining an intensifying Northern Hemisphere Atlantic storm is presented. The results show a significant sensitivity with respect to moisture.


2015 ◽  
Vol 22 (5) ◽  
pp. 601-611 ◽  
Author(s):  
I. Grooms ◽  
Y. Lee

Abstract. Superparameterization (SP) is a multiscale computational approach wherein a large scale atmosphere or ocean model is coupled to an array of simulations of small scale dynamics on periodic domains embedded into the computational grid of the large scale model. SP has been successfully developed in global atmosphere and climate models, and is a promising approach for new applications, but there is currently no practical data assimilation framework that can be used with these models. The authors develop a 3D-Var variational data assimilation framework for use with SP; the relatively low cost and simplicity of 3D-Var in comparison with ensemble approaches makes it a natural fit for relatively expensive multiscale SP models. To demonstrate the assimilation framework in a simple model, the authors develop a new system of ordinary differential equations similar to the two-scale Lorenz-'96 model. The system has one set of variables denoted {Yi}, with large and small scale parts, and the SP approximation to the system is straightforward. With the new assimilation framework the SP model approximates the large scale dynamics of the true system accurately.


Author(s):  
Andrea Storto ◽  
Giovanni De Magistris ◽  
Silvia Falchetti ◽  
Paolo Oddo

AbstractVariational data assimilation requires implementing the tangent-linear and adjoint (TA/AD) version of any operator. This intrinsically hampers the use of complicated observations. Here, we assess a new data-driven approach to assimilate acoustic underwater propagation measurements (Transmission Loss, TL) into a regional ocean forecasting system. TL measurements depend on the underlying sound speed fields, mostly temperature, and their inversion would require heavy coding of the TA/AD of an acoustic underwater propagation model. In this study, the non-linear version of the acoustic model is applied to an ensemble of perturbed oceanic conditions. TL outputs are used to formulate both a statistical linear operator based on canonical correlation analysis (CCA), and a neural network-based (NN) operator. For the latter, two linearization strategies are compared, the best-performing one relying on reverse-mode automatic differentiation. The new observation operator is applied in data assimilation experiments over the Ligurian Sea (Mediterranean Sea), using the Observing System Simulation Experiments (OSSE) methodology to assess the impact of TL observations onto oceanic fields. TL observations are extracted from a nature run with perturbed surface boundary conditions and stochastic ocean physics. Sensitivity analyses indicate that the NN reconstruction of TL is significantly better than CCA. Both CCA and NN are able to improve the upper ocean skill scores in forecast experiments, with NN outperforming CCA on the average. The use of the NN observation operator is computationally affordable, and its general formulation appears promising for the adjoint-free assimilation of any remote sensing observing network.


Sign in / Sign up

Export Citation Format

Share Document