scholarly journals Numerical solutions of the flexure equation

2021 ◽  
Author(s):  
David Hindle ◽  
Olivier Besson

Abstract. The 4th order differential equation describing elastic flexure of the lithosphere is one of the cornerstones of geodynamics, key to understanding topography, gravity, glacial isostatic rebound, foreland basin evolution and a host of other phenomena. Despite being fully formulated in the 1940’s, a number of significant issues concerning the basic equation have remained overlooked to this day. We first explain the different fundamental forms the equation can take and their difference in meaning and solution procedures. We then show how numerical solutions to flexure problems in general as they are currently formulated, are potentially unreliable in an unpredictable manner for cases where the coefficient of rigidity varies in space due to variations of the elastic thickness parameter. This is due to fundamental issues related to the numerical discretisation scheme employed. We demonstrate an alternative discretisation that is stable and accurate across the broadest conceivable range of conditions and variations of elastic thickness, and show how such a scheme can simulate conditions up to and including a completely broken lithosphere more usually modelled as an end loaded, single, continuous plate. Importantly, our scheme will allow breaks in plate interiors, allowing for instance, the creation of separate blocks of lithosphere which can also share the support of loads. The scheme we use has been known for many years, but remains rarely applied or discussed. We show that it is generally the most suitable finite difference discretisation of fourth order, elliptic equations of the kind describing many phenomena in elasticity, including the problem of bending of elastic beams. We compare the earlier discretisation scheme to the new one in 1 dimensional form, and also give the 2 dimensional discretisation based on the new scheme.We also describe a general issue concerning the numerical stability of any second order finite difference discretisation of a fourth order differential equation like that describing flexure where contrasting magnitudes of coefficients of different summed terms lead to round off problems which in turn destroy matrix positivity. We explain the use of 128 bit, floating point storage for variables to mitigate this issue.

2021 ◽  
Vol 10 (1) ◽  
pp. 67-86
Author(s):  
Bakytzhan Kurmanbek ◽  
Yogi Erlangga ◽  
Yerlan Amanbek

Abstract This paper presents the explicit inverse of a class of seven-diagonal (near) Toeplitz matrices, which arises in the numerical solutions of nonlinear fourth-order differential equation with a finite difference method. A non-recurrence explicit inverse formula is derived using the Sherman-Morrison formula. Related to the fixed-point iteration used to solve the differential equation, we show the positivity of the inverse matrix and construct an upper bound for the norms of the inverse matrix, which can be used to predict the convergence of the method.


2017 ◽  
Vol 23 (2) ◽  
Author(s):  
Muhad H. Abregov ◽  
Vladimir Z. Kanchukoev ◽  
Maryana A. Shardanova

AbstractThis work is devoted to the numerical methods for solving the first-kind boundary value problem for a linear second-order differential equation with a deviating argument in minor terms. The sufficient conditions of the one-valued solvability are established, and the a priori estimate of the solution is obtained. For the numerical solution, the problem studied is reduced to the equivalent boundary value problem for an ordinary linear differential equation of fourth order, for which the finite-difference scheme of second-order approximation was built. The convergence of this scheme to the exact solution is shown under certain conditions of the solvability of the initial problem. To solve the finite-difference problem, the method of five-point marching of schemes is used.


1998 ◽  
Vol 21 (3) ◽  
pp. 479-488
Author(s):  
A. S. A. Al-Hammadi

In this paper we identify a relation between the coefficients that represents a critical case for general fourth-order equations. We obtained the forms of solutions under this critical case.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Omar Bazighifan

By this work, our aim is to study oscillatory behaviour of solutions to 4th-order differential equation of neutral type L y ′ + ∑ j = 1 k q j y z β g j y = 0 where L y = ξ y w ‴ y α , w y : = z y + r y z g ˜ y . By using the comparison method with first-order differential inequality, we find new oscillation conditions for this equation.


Author(s):  
Jyoti Chaudhuri ◽  
V. Krishna Kumar

SynopsisThe direct convergence theory of eigenfunction expansions associated with boundry value problems, not necessarily self-adjoint, generated from complex-valued fourth-order symmetric ordinary differential expressions on semi-infinite intervals, is discussed. An admissible class of functions for the expansion is characterised. Also a generalisation of Stieltjes representation theorem for analytic functions discussed in [13, §§ 22.23 and 24] is obtained.


Author(s):  
W. N. Everitt

SynopsisThis paper considers an extension of the following inequality given in the book Inequalities by Hardy, Littlewood and Polya; let f be real-valued, twice differentiable on [0, ∞) and such that f and f are both in the space fn, ∞), then f′ is in L,2(0, ∞) andThe extension consists in replacing f′ by M[f] wherechoosing f so that f and M[f] are in L2(0, ∞) and then seeking to determine if there is an inequality of the formwhere K is a positive number independent of f.The analysis involves a fourth-order differential equation and the second-order equation associated with M.A number of examples are discussed to illustrate the theorems obtained and to show that the extended inequality (*) may or may not hold.


Sign in / Sign up

Export Citation Format

Share Document