scholarly journals Seismic visibility of a deep subduction channel – insights from numerical simulation of high-frequency seismic waves emitted from intermediate depth earthquakes

Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 141-159 ◽  
Author(s):  
W. Friederich ◽  
L. Lambrecht ◽  
B. Stöckhert ◽  
S. Wassmann ◽  
C. Moos

Abstract. Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure–low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1–5 Hz) to explore potential seismological evidence for the in situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix (BIM) structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for BIM structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. While for both models P and S waveforms are dominated by delayed high-amplitude guided waves, models with DSC exhibit a very different pattern of seismic arrivals compared to models without DSC. The main reason for the difference is the greater length and width of the low-velocity channel when a DSC is present. Seismic velocity heterogeneity within the DSC or oceanic crust is of minor importance. The characteristic patterns allow for definition of typical signatures by which models with and without DSC may be discriminated. The signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone exhibit similar multi-arrival waveforms as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.

2013 ◽  
Vol 5 (2) ◽  
pp. 1461-1509
Author(s):  
W. Friederich ◽  
L. Lambrecht ◽  
B. Stöckhert ◽  
S. Wassmann ◽  
C. Moos

Abstract. Return flow in a deep subduction channel (DSC) has been proposed to explain rapid exhumation of high pressure-low temperature metamorphic rocks, entirely based on the fossil rock record. Supported by thermo-mechanical models, the DSC is envisioned as a thin layer on top of the subducted plate reaching down to minimum depths of about 150 km. We perform numerical simulations of high-frequency seismic wave propagation (1 to 6 Hz) to explore potential seismological evidence for the in-situ existence of a DSC. Motivated by field observations, for modeling purposes we assume a simple block-in-matrix structure with eclogitic blocks floating in a serpentinite matrix. Homogenization calculations for block-in-matrix structures demonstrate that effective seismic velocities in such composites are lower than in the surrounding oceanic crust and mantle, with nearly constant values along the entire length of the DSC. Synthetic seismograms for receivers at the surface computed for intermediate depth earthquakes in the subducted oceanic crust for models with and without DSC turn out to be markedly influenced by its presence or absence. In models with channel, P and S waveforms are dominated by delayed high-amplitude guided waves emanating from the waveguide formed by oceanic crust and DSC. Simulated patterns allow for definition of typical signatures and discrimination between models with and without DSC. These signatures stably recur in slightly modified form for earthquakes at different depths inside subducted oceanic crust. Comparison with available seismological data from intermediate depth earthquakes recorded in the forearc of the Hellenic subduction zone reveal similar multi-arrival patterns as observed in the synthetic seismograms for models with DSC. According to our results, observation of intermediate depth earthquakes along a profile across the forearc may allow to test the hypothesis of a DSC and to identify situations where such processes could be active today.


2010 ◽  
Vol 494 (3-4) ◽  
pp. 201-210 ◽  
Author(s):  
L. Bezacier ◽  
B. Reynard ◽  
J.D. Bass ◽  
J. Wang ◽  
D. Mainprice

Geophysics ◽  
1994 ◽  
Vol 59 (7) ◽  
pp. 1100-1109 ◽  
Author(s):  
Grant A. Gist

It is an old problem in rock physics that the saturation dependence of high‐frequency laboratory velocities does not match the Biot‐Gassmann theory commonly used to predict the effects of gas on seismic velocities. A new interpretation of laboratory velocity data shows that the saturation dependence is controlled by two previously published high‐frequency acoustic mechanisms: (1) a gas pocket model that describes pressure equilibration between liquid and gas‐saturated regions of the pore space, and (2) local fluid flow, induced by pressure equilibration in pores with different aspect ratios. When these two mechanisms are added to Biot theory, the result describes published velocity versus gas saturation data for a wide range of rock types. These two mechanisms are negligible at the lower frequencies of seismic data, so the saturation dependence of laboratory velocities cannot be used to predict the saturation dependence at seismic frequencies. The one laboratory measurement that is relevant for predicting the seismic velocity is the ultrasonic velocity of the dry rock. The dry‐rock velocities should be used in the Biot‐Gassmann theory to predict the full saturation dependence of the seismic velocities.


2016 ◽  
Author(s):  
Andrew J. Smye ◽  
◽  
Colin R.M. Jackson ◽  
Matthias Konrad-Schmolke ◽  
Stephen Parman ◽  
...  

Author(s):  
Jesse B. Walters ◽  
Alicia M. Cruz-Uribe ◽  
Horst R. Marschall ◽  
Brandon Boucher

2021 ◽  
Vol 13 (14) ◽  
pp. 2684
Author(s):  
Eldert Fokker ◽  
Elmer Ruigrok ◽  
Rhys Hawkins ◽  
Jeannot Trampert

Previous studies examining the relationship between the groundwater table and seismic velocities have been guided by empirical relationships only. Here, we develop a physics-based model relating fluctuations in groundwater table and pore pressure with seismic velocity variations through changes in effective stress. This model justifies the use of seismic velocity variations for monitoring of the pore pressure. Using a subset of the Groningen seismic network, near-surface velocity changes are estimated over a four-year period, using passive image interferometry. The same velocity changes are predicted by applying the newly derived theory to pressure-head recordings. It is demonstrated that the theory provides a close match of the observed seismic velocity changes.


Sign in / Sign up

Export Citation Format

Share Document