velocity versus
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 38)

H-INDEX

30
(FIVE YEARS 2)

Author(s):  
Yindong Fang ◽  
Peter K. Galenko ◽  
Dongmei Liu ◽  
Klaus Hack ◽  
Markus Rettenmayr ◽  
...  

The thermodynamic description of the fcc phase in the Al-Cu system has been revised, allowing for the prediction of metastable fcc/liquid phase equilibria to undercoolings of Δ T  = 421 K below the eutectic temperature. Hypoeutectic Al-Cu alloys that are prone to pronounced microsegregation were solidified containerlessly in electromagnetic levitation. Solidus and liquidus concentrations were experimentally determined from highly undercooled samples employing energy-dispersive X-ray analysis. Solid concentrations at a rapidly propagating solid/liquid interface were additionally calculated using a sharp interface model that considers all undercoolings and is based on solvability theory. Modelling results (front velocity versus undercooling) were also corroborated by in situ observation with a high-speed camera. A newly established thermodynamic description of the fcc phase in Al-Cu is compatible with existing CALPHAD-type databases. Inconsistencies of previous descriptions such as a miscibility gap between Al-fcc and Cu-fcc on the Al-rich side, an unrealistic curvature of the solidus line in the same composition range or an azeotropic point near the melting point of Cu, are amended in the new description. The procedure to establish the description of phase equilibria at high undercoolings can be transferred to other alloy systems and is of a general nature. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.


2021 ◽  
Author(s):  
Wei Xia ◽  
Taimoor Akhtar ◽  
Christine A. Shoemaker

Abstract. This study introduced a novel Dynamically Normalized objective function (DYNO) for multi-variable (i.e., temperature and velocity) model calibration problems. DYNO combines the error metrics of multiple variables into a single objective function by dynamically normalizing each variable's error terms using information available during the search. DYNO is proposed to dynamically adjust the weight of the error of each variable hence balancing the calibration to each variable during optimization search. The DYNO is applied to calibrate a tropical hydrodynamic model where temperature and velocity observation data are used for model calibration simultaneously. We also investigated the efficiency of DYNO by comparing the result of using DYNO to results of calibrating to either temperature or velocity observation only. The result indicates that DYNO can balance the calibration in terms of water temperature and velocity and that calibrating to only one variable (e.g., temperature or velocity) cannot guarantee the goodness-of-fit of another variable (e.g., velocity or temperature). Our study suggested that both temperature and velocity measures should be used for hydrodynamic model calibration in real practice. Our example problems were computed with a parallel optimization method PODS but DYNO can also be easily used in serial applications.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 458
Author(s):  
Susam Boral ◽  
Trilochan Sahoo ◽  
Yury Stepanyants

An interesting physical phenomenon was recently observed when a fresh-water basin is covered by a thin ice film that has properties similar to the property of a rubber membrane. Surface waves can be generated under the action of wind on the air–water interface that contains an ice film. The modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown by the wind with a uniform vertical profile is studied here in terms of the airflow velocity versus wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation is derived using the multiple scale method in the presence of airflow. It is demonstrated that the potentially unstable hydro-elastic waves with negative energy appear for relatively small wind speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong. Estimates of parameters of modulated waves for the typical conditions are given.


2021 ◽  
Author(s):  
Zbigniew Kneba ◽  
Denys Stepanenko ◽  
Jacek Rudnicki

The worldwide aim of reducing environmental impact from internal combustion engines bring more and more stringent emission regulations. In 2017 by EU has been adopted new harmonized test procedure called WLTP. In general terms this test was designed for determining the levels of harmful emissions and fuel consumption of traditional and hybrid cars. This procedure contains specific driving scenarios which representing real-life driving patterns. Test cycles contain vehicle velocity versus time profiles and directly in powertrain analysis on the test benches cannot be used. In order to back calculate drive cycles to engine rpm versus torque profiles a simple longitudinal vehicle dynamics method was used in this paper. Moreover, in order to determine most representative engine operation points duing WLTP a density based grid clustering method was implemented. The experimental part of the study focuses on the comparative evaluation of the effect of various diesel to LPG substitution ratios (0% LPG, 10% LPG, 20% LPG and 30% LPG) on combustion and emission characteristics of dual-fuel diesel engine.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Yu. Faidiuk ◽  
L. Skivka ◽  
P. Zelena ◽  
O. Tereshchenko ◽  
O. Buluy ◽  
...  

Author(s):  
S. Boral ◽  
T. Sahoo ◽  
Y. Stepanyants

An interesting physical phenomenon was recently observed when a fresh-water basin is covered by a thin ice film that has properties similar to that of a rubber membrane. Surface waves can be generated under the action of wind on the air-water interface that contains an ice film. The modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown by the wind with a uniform vertical profile is studied here in terms of the air-flow velocity versus a wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation is derived using the multiple scale method in the presence of airflow. It is demonstrated that the potentially unstable hydro-elastic waves with negative energy appear for relatively small wind speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong. Estimates of parameters of modulated waves for the typical conditions are given.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Lu ◽  
Kaiguo Chen ◽  
Cheng Cheng ◽  
Zhongyu Zhou ◽  
Binqiang Luo ◽  
...  

AbstractThis paper reports on the development of a magnetically driven high-velocity implosion experiment conducted on the CQ-3 facility, a compact pulsed power generator with a load current of 2.1 MA. The current generates a high Lorentz force between inner and outer liners made from 2024 aluminum. Equally positioned photonic Doppler velocimetry probes record the liner velocities. In experiment CQ3-Shot137, the inner liner imploded with a radial converging velocity of 6.57 km/s while the outer liner expanded at a much lower velocity. One-dimensional magneto-hydrodynamics simulation with proper material models provided curves of velocity versus time that agree well with the experimental measurements. Simulation then shows that the inner liner underwent a shock-less compression to approximately 19 GPa and reached an off-Hugoniot high-pressure state. According to the scaling law that the maximum loading pressure is proportional to the square of the load current amplitude, the results demonstrate that such a compact capacitor bank as CQ-3 has the potential to generate pressure as high as 100 GPa within the inner liner in such an implosion experiment. It is emphasized that the technique described in this paper can be easily replicated at low cost.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5527
Author(s):  
Xuelong Fan ◽  
Carl Mikael Lind ◽  
Ida-Märta Rhen ◽  
Mikael Forsman

Accelerometer-based inclinometers have dominated kinematic measurements in previous field studies, while the use of inertial measurement units that additionally include gyroscopes is rapidly increasing. Recent laboratory studies suggest that these two sensor types and the two commonly used angular velocity computational methods may produce substantially different results. The aim of this study was, therefore, to evaluate the effects of sensor types and angular velocity computational methods on the measures of work postures and movements in a real occupational setting. Half-workday recordings of arm and trunk postures, and movements from 38 warehouse workers were compared using two sensor types: accelerometers versus accelerometers with gyroscopes—and using two angular velocity computational methods, i.e., inclination velocity versus generalized velocity. The results showed an overall small difference (<2° and value independent) for posture percentiles between the two sensor types, but substantial differences in movement percentiles both between the sensor types and between the angular computational methods. For example, the group mean of the 50th percentiles were for accelerometers: 71°/s (generalized velocity) and 33°/s (inclination velocity)—and for accelerometers with gyroscopes: 31°/s (generalized velocity) and 16°/s (inclination velocity). The significant effects of sensor types and angular computational methods on angular velocity measures in field work are important in inter-study comparisons and in comparisons to recommended threshold limit values.


2021 ◽  
Vol 54 (1F) ◽  
pp. 33-43
Author(s):  
Soran N. Sadeq

River Lesser Zab in N Iraq flow regime has been changed as a result of building a number of dams across the river course causing the cross-section of the river to vary in time and space. The aim of this study is to investigate the morphological changes for the river channel from AltunKupri City to Dibbs Dam. Five cross-sections were studied to explain the relation between hydraulic geometry parameters (width, depth, and velocity) versus river discharge using linear regression analysis, and the results show that river discharge does have a direct linear relationship with the morphologic parameters of the river channel, and the width-depth ratio has a positive linear relationship with mean flow velocity, and negative nonlinear relationships with cross-section area, indicating widening of river reaches due to the morphological and geologic components of river banks. The meander channel system in the study area can be described as a single phase, irregular width variation with high lateral erosion rate for a meander bend. Also, the river has numerous perennials elongated to subrounded alluvial islands, which are covered by shrubs or houses for local inhabitants. These outcomes are expected to be useful in developing water resources projects in the area.


Sign in / Sign up

Export Citation Format

Share Document