scholarly journals Plate tectonic raster reconstruction in GPlates

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 741-755 ◽  
Author(s):  
J. Cannon ◽  
E. Lau ◽  
R. D. Müller

Abstract. We describe a novel method implemented in the GPlates plate tectonic reconstruction software to interactively reconstruct arbitrarily high-resolution raster data to past geological times using a rotation model. The approach is based on the projection of geo-referenced raster data into a cube map followed by a reverse projection onto rotated tectonic plates on the surface of the globe. This decouples the rendering of a geo-referenced raster from its reconstruction, providing a number of benefits including a simple implementation and the ability to combine rasters with different geo-referencing or inbuilt raster projections. The cube map projection is accelerated by graphics hardware in a wide variety of computer systems manufactured over the last decade. Furthermore, by integrating a multi-resolution tile partitioning into the cube map we can provide on-demand tile streaming, level-of-detail rendering and hierarchical visibility culling, enabling researchers to visually explore essentially unlimited resolution geophysical raster data attached to tectonic plates and reconstructed through geological time. This capability forms the basis for interactively building and improving plate reconstructions in an iterative fashion, particularly for tectonically complex regions.

2014 ◽  
Vol 6 (1) ◽  
pp. 793-830
Author(s):  
J. Cannon ◽  
E. Lau ◽  
R. D. Müller

Abstract. We describe a novel method implemented in the GPlates plate tectonic reconstruction software to interactively reconstruct arbitrarily high-resolution raster data to past geological times using a rotation model. The approach is based on the projection of geo-referenced raster data into a cube map followed by a reverse projection onto rotated tectonic plates on the surface of the globe. This decouples the rendering of a geo-referenced raster from its reconstruction, providing a number of benefits including a simple implementation and the ability to combine rasters with different geo-referencing or inbuilt raster projections. The cube map projection is accelerated by graphics hardware in a wide variety of computer systems manufactured over the last decade. Furthermore, by integrating a multi-resolution tile partitioning into the cube map we can provide on-demand tile streaming, level-of-detail rendering and hierarchical visibility culling enabling researchers to visually explore essentially unlimited resolution geophysical raster data attached to tectonic plates and reconstructed through geological time. This capability forms the basis for interactively building and improving plate reconstructions in an iterative fashion, particularly for tectonically complex regions.


2021 ◽  
Author(s):  
Michael King ◽  
Kim Welford ◽  
Patricia Cadenas ◽  
Julie Tugend

<p>The kinematics of the Iberian plate during Mesozoic extension and subsequent Alpine compression and their implications on the partitioning of strain experienced across the Iberia-Europe plate boundary continue to be a subject of scientific interest, and debate. To date, the majority of plate tectonic models only consider the motion of rigid tectonic plates. In addition, the lack of consideration for the kinematics of intra-continental domains and intervening continental blocks in-between has led to numerous discrepancies between rigid plate kinematic models of Iberia, based mainly on tight-fit reconstruction of M-series magnetic anomalies, and their ability to reconcile geological and geophysical observations. To address these discrepancies, deformable plate tectonic models constrained by previous plate reconstructions, geological, and geophysical studies are built using the GPlates software to study the evolution of deformation experienced along the Iberia-Eurasia plate boundary from the Triassic to present day. These deformable plate models consider the kinematics of small intra-continental blocks such as the Landes High and Ebro Block situated between large tectonic plates, their interplay with pre-existing structural trends, and the collective impact of these phenomena on the deformation experienced during Mesozoic rifting and Alpine compressional re-activation along the Iberia-European plate boundary. Preliminary results suggest that the independent kinematics of the Landes High played a key role on the distribution of oblique extension between different rift arms and resultant deformation within the Bay of Biscay. Within the Pyrenean realm, deformation experienced prior to and during the Alpine Orogeny was more largely controlled by the interplay between the Ebro Block kinematics and rift segmentation induced by the orientation of inherited trends.</p>


2010 ◽  
Author(s):  
Matt Luheshi ◽  
Keith Nunn ◽  
David Roberts ◽  
Hamish Wilson

Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 397-417 ◽  
Author(s):  
Annabel Causer ◽  
Lucía Pérez-Díaz ◽  
Jürgen Adam ◽  
Graeme Eagles

Abstract. Plate tectonic modellers often rely on the identification of “break-up” markers to reconstruct the early stages of continental separation. Along the Iberian-Newfoundland margin, so-called break-up markers include interpretations of old magnetic anomalies from the M series, as well as the “J anomaly”. These have been used as the basis for plate tectonic reconstructions are based on the concept that these anomalies pinpoint the location of first oceanic lithosphere. However, uncertainties in the location and interpretation of break-up markers, as well as the difficulty in dating them precisely, has led to plate models that differ in both the timing and relative palaeo-positions of Iberia and Newfoundland during separation. We use newly available seismic data from the Southern Newfoundland Basin (SNB) to assess the suitability of commonly used break-up markers along the Newfoundland margin for plate kinematic reconstructions. Our data show that basement associated with the younger M-series magnetic anomalies is comprised of exhumed mantle and magmatic additions and most likely represents transitional domains and not true oceanic lithosphere. Because rifting propagated northward, we argue that M-series anomaly identifications further north, although in a region not imaged by our seismic, are also unlikely to be diagnostic of true oceanic crust beneath the SNB. Similarly, our data also allow us to show that the high amplitude of the J Anomaly is associated with a zone of exhumed mantle punctuated by significant volcanic additions and at times characterized by interbedded volcanics and sediments. Magmatic activity in the SNB at a time coinciding with M4 (128 Ma) and the presence of SDR packages onlapping onto a basement fault suggest that, at this time, plate divergence was still being accommodated by tectonic faulting. We illustrate the differences in the relative positions of Iberia and Newfoundland across published plate reconstructions and discuss how these are a direct consequence of the uncertainties introduced into the modelling procedure by the use of extended continental margin data (dubious magnetic anomaly identifications, break-up unconformity interpretations). We conclude that a different approach is needed for constraining plate kinematics of the Iberian plate pre-M0 times.


2021 ◽  
Vol 9 ◽  
Author(s):  
Christian Vérard

The formation of Gondwana results from a complex history, which can be linked to many orogenic sutures. The sutures have often been gathered in the literature under broad orogenies — in particular the Eastern and Western Pan-African Orogenies — although their ages may vary a lot within those wide belts. The Panalesis model is a plate tectonic model, which aims at reconstructing 100% of the Earth’s surface, and proposes a geologically, geometrically, kinematically, and geodynamically coherent solution for the evolution of the Earth from 888 to 444 Ma. Although the model confirms that the assembly of Gondwana can be considered complete after the Damara and Kuunga orogenies, it shows above all that the detachment and amalgamation of “terranes” is a roughly continuous process, which even persisted after the Early Cambrian. By using the wealth of Plate Tectonics, the Panalesis model makes it possible to derive numerous additional data and maps, such as the age of the sea-floor everywhere on the planet at every time slice, for instance. The evolution of accretion rates at mid-oceanic ridges and subduction rates at trenches are shown here, and yields results consistent with previous estimates. Understanding the variation of the global tectonic activity of our planet through time is key to link plate tectonic modeling with other disciplines of Earth sciences.


Sign in / Sign up

Export Citation Format

Share Document