scholarly journals Experimental sand burial affects seedling survivorship, morphological traits, and biomass allocation of <i>Ulmus pumila</i> var. <i>sabulosa</i> in the Horqin Sandy Land, China

Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1085-1094 ◽  
Author(s):  
Jiao Tang ◽  
Carlos Alberto Busso ◽  
Deming Jiang ◽  
Ala Musa ◽  
Dafu Wu ◽  
...  

Abstract. As a native tree species, Ulmus pumila var. sabulosa (sandy elm) is widely distributed in the Horqin Sandy Land, China. However, seedlings of this species have to withstand various depths of sand burial after emergence because of increasing soil degradation, which is mainly caused by overgrazing, climate change, and wind erosion. An experiment was conducted to evaluate the changes in its survivorship, morphological traits, and biomass allocation when seedlings were buried at different burial depths: unburied controls and seedlings buried vertically up to 33, 67, 100, or 133 % of their initial mean seedling height. The results showed that partial sand burial treatments (i.e., less than 67 % burial) did not reduce seedling survivorship, which still reached 100 %. However, seedling mortality increased when sand burial was equal to or greater than 100 %. In comparison with the control treatment, seedling height and stem diameter increased at least by 6 and 14 % with partial burial, respectively. In the meantime, seedling taproot length, total biomass, and relative mass growth rates were at least enhanced by 10, 15.6, and 27.6 %, respectively, with the partial sand burial treatment. Furthermore, sand burial decreased total leaf area and changed biomass allocation in seedlings, partitioning more biomass to aboveground organs (e.g., leaves) and less to belowground parts (roots). Complete sand burial after seedling emergence inhibited its re-emergence and growth, even leading to death. Our findings indicated that seedlings of sandy elm showed some resistance to partial sand burial and were adapted to sandy environments from an evolutionary perspective. The negative effect of excessive sand burial after seedling emergence might help in understanding failures in recruitments of sparse elm in the study region.

2016 ◽  
Author(s):  
Jiao Tang ◽  
Carlos Alberto Busso ◽  
Deming Jiang ◽  
Ala Musa ◽  
Dafu Wu ◽  
...  

Abstract. As a native tree species, Ulmus pumila var. sabulosa (Sandy elm) is widely distributed in Horqin Sandy Land. However, seedlings of this species have to withstand various depths of sand burial after emergence because of increasing soil degradation. So an experiment was conducted to evaluate the changes in the survivorship, morphological traits and biomass allocation buried with different burial depths (unburied, and seedlings buried vertically up to 33, 67, 100 or 133 % of the initial mean seedling height). The results showed that partial sand burial treatments (i.e., less than 67 % burial) did not influence seedling survivorship, which still reached 100 %. However, seedling mortality increased as sand burial was equal to or greater than 100 %. Seedling height and stem diameter increased at least by 6 to 14 % with partial burial in comparison with control treatment. Whilst seeding taproot length, total biomass, and relative growth rates at least enhanced by 10 %, 15.6 %, and 27.6 %, respectively, with the partial sand burial treatment. Furthermore, sand burial decreased total leaf area and changed biomass allocation on seedlings, transferring more biomass to aboveground rather than belowground parts. Complete sand burial after seedling emergence inhibited its growth, and even lead to death. Our findings indicated that seedling of sandy elm had a certain resistance to partial sand burial and acclimated to sandy environments. The negative effects of common excessive sand burial after seedling emergence help to understand failures in recruitment of sparse elm woodland in the Horqin sandy land.


2015 ◽  
Vol 35 (9) ◽  
Author(s):  
温都日呼 Wendurihu ◽  
王铁娟 WANG Tiejuan ◽  
张颖娟 ZHANG Yingjuan ◽  
吴芳芳 WU Fangfang

2012 ◽  
Vol 610-613 ◽  
pp. 3495-3499 ◽  
Author(s):  
Yu Hui He ◽  
Xin Ping Liu ◽  
Ha Lin Zhao

Caragana microphylla is a pioneer leguminous shrub species, and plays an important role in sand fixing and desertification control in the Horqin Sandy Land of Northern China. In this study, seedlings were buried by sand to depths of 0 (control), 1/3, 2/3, 1 and 4/3 of their mean height, and the effects of sand burial depth on seedling growth of Caragana microphylla were tested. Results show that with increasing burial depth, biomass allocation to leaves decrease, while stem biomass allocation increase, and both shoot and root growth of C. microphylla are stimulated and seedling biomass is the highest when burial depth is 2/3 of seedling height. Therefore, moderate burial could facilitate seedlings growth of C. microphylla


2016 ◽  
Vol 8 (1) ◽  
pp. 68 ◽  
Author(s):  
Jiao Tang ◽  
Carlos Busso ◽  
Deming Jiang ◽  
Yongcui Wang ◽  
Dafu Wu ◽  
...  

2021 ◽  
Author(s):  
yuanyuan Tao ◽  
Tian-cui Sang ◽  
Jun-jie Yan ◽  
Yun-xia Hu ◽  
Yu Zhao ◽  
...  

Abstract different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X. spinosum. Six sand burial depths (1, 2, 3, 5, 7 and 9 cm) were established to explore the response of X. spinosum seed germination and seedling growth to sand burial. The first emergence time, peak emergence time, emergence rate, seedling growth height, biomass and biomass distribution of X. spinosum seeds had significant effects at different sand burial depths (P < 0.05). The X. spinosum seeds had the highest emergence rate (71.5%) at 1 cm sand burial and the maximum seedling height (7.1 cm). As sand burial depth increased, the emergence rate and seedling height gradually decreased, and the emergence rate (12.25%) and seedling height (2.9 cm) were lowest at 9 cm sand burial. The root length at 9 cm depth (13.6 cm) was significantly higher than that at other sand depths (P < 0.05). The sand burial depth affected the biomass accumulation and distribution of X. spinosum. As sand burial depth increased, the root biomass and rhizome ratio increased, and the most deeply buried seedlings allocated more biomass for root growth. The optimal sand burial depth for seed germination and seedling growth of X. spinosum was 1–3 cm, and high burial depth (5–9 cm) was not conducive to the germination and growth of X. spinosum seedlings. For prevention and control of X. spinosum, we suggest deeply ploughing crops before sowing to ensure X. spinosum seeds are ploughed into a deep soil layer.


2010 ◽  
Vol 26 (5) ◽  
pp. 714-719
Author(s):  
Ming LI ◽  
De-ming JIANG ◽  
Yong-ming LUO ◽  
Xiu-mei WANG ◽  
Bo LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document