scholarly journals The seasonal evolution of albedo across glaciers and the surrounding landscape of Taylor Valley, Antarctica

2020 ◽  
Vol 14 (3) ◽  
pp. 769-788 ◽  
Author(s):  
Anna Bergstrom ◽  
Michael N. Gooseff ◽  
Madeline Myers ◽  
Peter T. Doran ◽  
Julian M. Cross

Abstract. The McMurdo Dry Valleys (MDVs) of Antarctica are a polar desert ecosystem consisting of alpine glaciers, ice-covered lakes, streams, and expanses of vegetation-free rocky soil. Because average summer temperatures are close to 0 ∘C, the MDV ecosystem in general, and glacier melt dynamics in particular, are both closely linked to the energy balance. A slight increase in incoming radiation or change in albedo can have large effects on the timing and volume of meltwater. However, the seasonal evolution or spatial variability of albedo in the valleys has yet to fully characterized. In this study, we aim to understand the drivers of landscape albedo change within and across seasons. To do so, a box with a camera, GPS, and shortwave radiometer was hung from a helicopter that flew transects four to five times a season along Taylor Valley. Measurements were repeated over three seasons. These data were coupled with incoming radiation measured at six meteorological stations distributed along the valley to calculate the distribution of albedo across individual glaciers, lakes, and soil surfaces. We hypothesized that albedo would decrease throughout the austral summer with ablation of snow patches and increasing sediment exposure on the glacier and lake surfaces. However, small snow events (<6 mm water equivalent) coupled with ice whitening caused spatial and temporal variability of albedo across the entire landscape. Glaciers frequently followed a pattern of increasing albedo with increasing elevation, as well as increasing albedo moving from east to west laterally across the ablation zone. We suggest that spatial patterns of albedo are a function of landscape morphology trapping snow and sediment, longitudinal gradients in snowfall magnitude, and wind-driven snow redistribution from east to west along the valley. We also compare our albedo measurements to the MODIS albedo product and found that overall the data have reasonable agreement. The mismatch in spatial scale between these two datasets results in variability, which is reduced after a snow event due to albedo following valley-scale gradients of snowfall magnitude. These findings highlight the importance of understanding the spatial and temporal variability in albedo and the close coupling of climate and landscape response. This new understanding of landscape albedo can constrain landscape energy budgets, better predict meltwater generation on from MDV glaciers, and how these ecosystems will respond to changing climate at the landscape scale.

2019 ◽  
Author(s):  
Anna Bergstrom ◽  
Michael Gooseff ◽  
Madeline Myers ◽  
Peter T. Doran

Abstract. The McMurdo Dry Valleys (MDVs) of Antarctica are a polar desert ecosystem consisting of alpine glaciers, ice-covered lakes, streams, and expanses of vegetation-free rocky soil. Because average summer temperatures are close to 0 °C, glacier melt dynamics in particular, but the Dry Valley ecosystem in general, are closely linked to the energy balance. A slight increase in incoming radiation or change in albedo can have large effects on the timing and volume of melt water. However, we have yet to fully characterize the seasonal evolution or spatial variability of albedo in the valleys. In this study, we aim to understand the drivers of landscape albedo change within and across seasons. To do so, we used a camera, gps, and short wave radiometer from a helicopter-based platform to fly transects 4–5 times a season along Taylor Valley over three seasons. We coupled these data with incoming radiation measured at 6 meteorological stations distributed along the valley to calculate the distribution of albedo across individual glaciers, lakes, and the soil surfaces. We hypothesized that albedo would decrease throughout the austral summer with ablation of snow patches and ice and increasing sediment exposure on the glacier and lake surfaces. However, small snow events (


2021 ◽  
Author(s):  
Livio Ruggiero ◽  
Alessandra Sciarra ◽  
Adriano Mazzini ◽  
Fabio Florindo ◽  
Gary Wilson ◽  
...  

Abstract McMurdo Dry Valleys comprise 10% of the ice-free soil surface areas in Antarctica. Permafrost stability plays an important role in C-cycle as it potentially stores considerable quantities of greenhouse gases. While the geomorphology of the Dry Valleys reflects a long history of changing climate conditions, comparison with the rapidly warming Northern polar region suggests that future climate and ecosystems may change more rapidly from permafrost degradation. In Austral summer 2019/2020 a comprehensive sampling of soil gases and CO2 flux measurements was undertaken in the Taylor Valley, with the aims to identify potential presence of soil gases in the active layer. The results obtained show high concentrations of CH4, CO2, He and an increasing CO2 flux rate. We identify the likely source of the gas to be from dissolved gases in deep brine moving from inland (potentially underneath the Antarctic Ice Sheet) to the coast at depth beneath the permafrost layer.


Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
W. Berry Lyons ◽  
Elsa Saelens ◽  
Kathleen A. Welch

Fossil fuel use associated with scientific activities in the Taylor Valley, Antarctic has been examined to determine the fluxes of particulate organic and elemental carbon and nitrogen as well as NOx for the 2015–2016 austral summer field season. These carbon and nitrogen fluxes are compared to our previously published calculations for the 1997–1998 austral summer. In addition, we compile fossil fuel usage and resulting C and N fluxes from the major field camp in Taylor Valley, Lake Hoare Camp (LHC) from the late 1990’s through 2017. In general, the annual fluxes do vary from year to year, but there is no significant trend, at least during the primary summer field season. There is indication that increasing the length of scientific operations does increase the C and N inputs via fossil fuel burning. This works supports our original results demonstrating that over long periods of time the anthropogenic flux of N from local fossil fuel burning could become quantitatively important in the region. Although the particulate C fluxes remain very low, the recent finding of black carbon in the Taylor Valley landscape indicates more on-going monitoring of the source of this material is merited.


Crop Science ◽  
2004 ◽  
Vol 44 (3) ◽  
pp. 847 ◽  
Author(s):  
Weidong Liu ◽  
Matthijs Tollenaar ◽  
Greg Stewart ◽  
William Deen

Sign in / Sign up

Export Citation Format

Share Document