glacier melt
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 69)

H-INDEX

32
(FIVE YEARS 6)

2022 ◽  
Vol 2 ◽  
Author(s):  
Shannon M. Healy ◽  
Alia L. Khan

The glaciers of the North Cascades have experienced mass loss and terminus retreat due to climate change. The meltwater from these glaciers provides a flux of cold glacier meltwater into the river systems, which supports salmon spawning during the late summer dry season. The Nooksack Indian Tribe monitors the outlet flow of the Sholes Glacier within the North Cascades range with the goal of understanding the health of the glacier and the ability of the Tribe to continue to harvest sustainable populations of salmon. This study compares the UAV derived glacier ablation with the discharge data collected by the Tribe. We surveyed the Sholes Glacier twice throughout the 2020 melt season and, using Structure-from-Motion technology, generated high resolution multispectral orthomosaics and Digital Elevation Models (DEMs) of the glacier on each of the survey dates. The DEMs were differenced to reveal the surface height change of the glacier. The spectral data of the orthomosaics were used to conduct IsoData unsupervised classification. This process divided the survey area into Snow, Ice, and Rock classes that were then used to attribute the surface height changes of the DEMs to either snow or ice melt. The analysis revealed the glacier lost an average thickness of −0.132 m per day (m d−1) with snow and ice losing thickness at similar rates, −0.130 m d−1 and −0.132 m d−1 respectively. DEM differencing reveals that a total of −550,161 ± 45,206 m3 water equivalent (w.e.) was discharged into Wells Creek between the survey dates whereas the stream gauge station measured a total discharge of 350,023 m3. This study demonstrates the ability to spectrally classify the UAV data and derive discharge measurements while evaluating the small-scale spatial variability of glacier melt. Assessing ablation in small alpine glaciers is of great importance to downstream communities, like the Nooksack Indian Tribe who seek to understand the magnitude and timing of glacier melt in order to better protect their salmon populations. With this paper, we provide a baseline for future glacier monitoring and the potential to connect the snow surface properties with the rate of snow melt into a warming future.


2021 ◽  
Vol 13 (24) ◽  
pp. 5122
Author(s):  
Massimo Menenti ◽  
Xin Li ◽  
Li Jia ◽  
Kun Yang ◽  
Francesca Pellicciotti ◽  
...  

This project explored the integrated use of satellite, ground observations and hydrological distributed models to support water resources assessment and monitoring in High Mountain Asia (HMA). Hydrological data products were generated taking advantage of the synergies of European and Chinese data assets and space-borne observation systems. Energy-budget-based glacier mass balance and hydrological models driven by satellite observations were developed. These models can be applied to describe glacier-melt contribution to river flow. Satellite hydrological data products were used for forcing, calibration, validation and data assimilation in distributed river basin models. A pilot study was carried out on the Red River basin. Multiple hydrological data products were generated using the data collected by Chinese satellites. A new Evapo-Transpiration (ET) dataset from 2000 to 2018 was generated, including plant transpiration, soil evaporation, rainfall interception loss, snow/ice sublimation and open water evaporation. Higher resolution data were used to characterize glaciers and their response to environmental forcing. These studies focused on the Parlung Zangbo Basin, where glacier facies were mapped with GaoFeng (GF), Sentinal-2/Multi-Spectral Imager (S2/MSI) and Landsat8/Operational Land Imager (L8/OLI) data. The geodetic mass balance was estimated between 2000 and 2017 with Zi-Yuan (ZY)-3 Stereo Images and the SRTM DEM. Surface velocity was studied with Landsat5/Thematic Mapper (L5/TM), L8/OLI and S2/MSI data over the period 2013–2019. An updated method was developed to improve the retrieval of glacier albedo by correcting glacier reflectance for anisotropy, and a new dataset on glacier albedo was generated for the period 2001–2020. A detailed glacier energy and mass balance model was developed with the support of field experiments at the Parlung No. 4 Glacier and the 24 K Glacier, both in the Tibetan Plateau. Besides meteorological measurements, the field experiments included glaciological and hydrological measurements. The energy balance model was formulated in terms of enthalpy for easier treatment of water phase transitions. The model was applied to assess the spatial variability in glacier melt. In the Parlung No. 4 Glacier, the accumulated glacier melt was between 1.5 and 2.5 m w.e. in the accumulation zone and between 4.5 and 6.0 m w.e. in the ablation zone, reaching 6.5 m w.e. at the terminus. The seasonality in the glacier mass balance was observed by combining intensive field campaigns with continuous automatic observations. The linkage of the glacier and snowpack mass balance with water resources in a river basin was analyzed in the Chiese (Italy) and Heihe (China) basins by developing and applying integrated hydrological models using satellite retrievals in multiple ways. The model FEST-WEB was calibrated using retrievals of Land Surface Temperature (LST) to map soil hydrological properties. A watershed model was developed by coupling ecohydrological and socioeconomic systems. Integrated modeling is supported by an updated and parallelized data assimilation system. The latter exploits retrievals of brightness temperature (Advanced Microwave Scanning Radiometer, AMSR), LST (Moderate Resolution Imaging Spectroradiometer, MODIS), precipitation (Tropical Rainfall Measuring Mission (TRMM) and FengYun (FY)-2D) and in-situ measurements. In the case study on the Red River Basin, a new algorithm has been applied to disaggregate the SMOS (Soil Moisture and Ocean Salinity) soil moisture retrievals by making use of the correlation between evaporative fraction and soil moisture.


2021 ◽  
pp. 87-107
Author(s):  
Jorge Daniel Taillant

This chapter discusses the relationship between glacier melt, sea level, and water supply and the relationship between the water we drink at home and use for agriculture to mountain glaciers. It describes the Earth’s freshwater supply and its various compositions and locations. It gives concrete examples of different sized glaciers and their relative freshwater contribution to nearby populations. It reviews the freshwater basin storage and regulation role that glaciers play in ecosystems and the importance of glaciers as sources of freshwater for human consumption and agriculture during warm and dry months as well as during prolonged drought periods.


2021 ◽  
Vol 16 (8) ◽  
pp. 1197-1206
Author(s):  
Sohaib Baig ◽  
Takahiro Sayama ◽  
Kaoru Takara ◽  
◽  
◽  
...  

The upper Indus River basin has large masses of glaciers that supply meltwater in the summer. Water resources from the upper Indus River basin are crucial for human activities and ecosystems in Pakistan, but they are vulnerable to climate change. This study focuses on the impacts of climate change, particularly the effects of receding glaciers on the water resources in a catchment of the upper Indus river basin. This study predicts river flow using a hydrologic model coupled with temperature-index snow and glacier melt models forced by observed climate data. The basin is divided into seven elevation zones so that the melt components and rainfall-runoff were calculated at each elevation zone. Hydrologic modeling revealed that glaciers contributed one-third of the total flow while snowmelt melt contributed about 40%; rainfall contributed to the remaining flow. Some climate scenarios based on CMIP5 and CORDEX were employed to quantify the impacts of climate change on annual river flows. The glacier retreat in the mid and late centuries is also considered based on climate change scenarios. Future river flows, simulated by the hydrologic model, project significant changes in their quantity and timing. In the mid-century, river flows will increase because of higher precipitation and glacier melt. Simulations projected that until 2050, the overall river flows will increase by 11%, and no change in the shape of the hydrograph is expected. However, this increasing trend in river flows will reverse in the late century because glaciers will not have enough mass to sustain the glacier melt flow. The change will result in a 4.5% decrease in flow, and the timing of the monthly peak flow will shift from June to May. This earlier shift in the streamflow will make water management more difficult in the future, requiring inclusive approaches in water resource management.


Author(s):  
Jorge Daniel Taillant

Climate change is happening all around us, and one of the telltale signs is melting glaciers. We hear about it almost daily, pieces of ice the size of continents breaking off of Antarctica or the polar arctic ice breaking up and disappearing more and more quickly opening up navigational routes once unavailable due to thick winter ice cover. Will melting ice and glaciers so far away change our lives? Meltdown takes us deep into the cryosphere, the Earth’s frozen environment and picks apart why glacier melt caused by climate change will alter (and already is altering) the way we live around the world. From rising seas that will destroy property and flood millions of acres of coastal lands, displacing hundreds of millions of people, to rising global temperatures due to reflectivity changes of the Earth because of decreased white glacier surface area, to colossal water supply changes from glacier runoff reduction, to deadly glacier tsunamis caused by the structural weakening of ice on high mountaintops that will take out entire communities living in glacier runoff basins, to escaping methane gas from thawing frozen permafrost grounds, and changing ocean temperatures that affect jet streams and ocean water currents around the planet, glacier melt is altering our global ecosystems in ways that will drastically change our everyday lives. Meltdown takes us into the little-known periglacial environment, a world of invisible subterranean glaciers in our coldest mountain ranges that will survive the initial impacts of climate change but that are also ultimately at risk due to a warming climate. By examining the dynamics of melting glaciers, Meltdown helps us grasp the impacts of a massive geological era shift occurring right before our eyes.


2021 ◽  
pp. 49-86
Author(s):  
Jorge Daniel Taillant

This chapter focuses on the impacts of glacier melt on our oceans and related sea level rise. It discusses past and present sea levels and the relative influence of the ice age cycles. The chapter also reviews risks posed now to life on Earth due to glacier melt and related sea level rise, considering these in relation to ongoing and new flooding impacting coastal areas. It goes on to discuss the theories of Hot House Earth and Snowball Earth, the likelihood of these scenarios being realized, and the impact of high levels of CO2 concentrations on the likelihood of either eventuality.


2021 ◽  
pp. 162-178
Author(s):  
Jorge Daniel Taillant

This chapter is divided into four sections, describing various impacts of glacier melt on different Earth ecosystems, including the effects of melting ice and water temperature on changes to ocean currents, on the global air Jet Stream, and on land surfaces, such as the popping up effect (the surface rebound effect) of the Earth once glaciers recede. It discusses the role of glacier meltwater for energy generation, as well as the impacts of the acceleration of glacier melt on flora and fauna, such as polar bears, salmon, and river bed and riparian biota.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sonam Rinzin ◽  
Guoqing Zhang ◽  
Sonam Wangchuk

Against the background of climate change-induced glacier melting, numerous glacial lakes are formed across high mountain areas worldwide. Existing glacial lake inventories, chiefly created using Landsat satellite imagery, mainly relate to 1990 onwards and relatively long (decadal) temporal scales. Moreover, there is a lack of robust information on the expansion and the GLOF hazard status of glacial lakes in the Bhutan Himalaya. We mapped Bhutanese glacial lakes from the 1960s to 2020, and used these data to determine their distribution patterns, expansion behavior, and GLOF hazard status. 2,187 glacial lakes (corresponding to 130.19 ± 2.09 km2) were mapped from high spatial resolution (1.82–7.62 m), Corona KH-4 images from the 1960s. Using the Sentinel-2 (10 m) and Sentinel-1 (20 m × 22 m), we mapped 2,553 (151.81 ± 7.76 km2), 2,566 (152.64 ± 7.83 km2), 2,572 (153.94 ± 7.83 km2), 2,569 (153.97 ± 7.79 km2) and 2,574 (156.63 ± 7.95 km2) glacial lakes in 2016, 2017, 2018, 2019 and 2020, respectively. The glacier-fed lakes were mainly present in the Phochu (22.63%) and the Kurichu (20.66%) basins. A total of 157 glacier-fed lakes have changed into non-glacier-fed lakes over the 60 years of lake evolution. Glacier-connected lakes (which constitutes 42.25% of the total glacier-fed lake) area growth accounted for 75.4% of the total expansion, reaffirming the dominant role of glacier-melt water in expanding glacial lakes. Between 2016 and 2020, 19 (4.82 km2) new glacial lakes were formed with an average annual expansion rate of 0.96 km2 per year. We identified 31 lakes with a very-high and 34 with high GLOF hazard levels. These very-high to high GLOF hazard lakes were primarily located in the Phochu, Kurichu, Drangmechu, and Mochu basins. We concluded that the increasing glacier melt is the main driver of glacial lake expansion. Our results imply that extending glacial lakes studies back to the 1960s provides new insights on glacial lake evolution from glacier-fed lakes to non-glacier-fed lakes. Additionally, we reaffirmed the capacity of Sentinel-1 and Sentinel-2 data to determine annual glacial lake changes. The results from this study can be a valuable basis for future glacial lake monitoring and prioritizing limited resources for GLOF mitigation programs.


Sign in / Sign up

Export Citation Format

Share Document