scholarly journals Supplementary material to "Nitrate deposition and preservation in the snowpack along a traverse from coast to the ice sheet summit (Dome A) in East Antarctica"

Author(s):  
Guitao Shi ◽  
Meredith G. Hastings ◽  
Jinhai Yu ◽  
Tianming Ma ◽  
Zhengyi Hu ◽  
...  
2018 ◽  
Vol 12 (4) ◽  
pp. 1177-1194 ◽  
Author(s):  
Guitao Shi ◽  
Meredith G. Hastings ◽  
Jinhai Yu ◽  
Tianming Ma ◽  
Zhengyi Hu ◽  
...  

Abstract. Antarctic ice core nitrate (NO3-) can provide a unique record of the atmospheric reactive nitrogen cycle. However, the factors influencing the deposition and preservation of NO3- at the ice sheet surface must first be understood. Therefore, an intensive program of snow and atmospheric sampling was made on a traverse from the coast to the ice sheet summit, Dome A, East Antarctica. Snow samples in this observation include 120 surface snow samples (top ∼ 3 cm), 20 snow pits with depths of 150 to 300 cm, and 6 crystal ice samples (the topmost needle-like layer on Dome A plateau). The main purpose of this investigation is to characterize the distribution pattern and preservation of NO3- concentrations in the snow in different environments. Results show that an increasing trend of NO3- concentrations with distance inland is present in surface snow, and NO3- is extremely enriched in the topmost crystal ice (with a maximum of 16.1 µeq L−1). NO3- concentration profiles for snow pits vary between coastal and inland sites. On the coast, the deposited NO3- was largely preserved, and the archived NO3- fluxes are dominated by snow accumulation. The relationship between the archived NO3- and snow accumulation rate can be depicted well by a linear model, suggesting a homogeneity of atmospheric NO3- levels. It is estimated that dry deposition contributes 27–44 % of the archived NO3- fluxes, and the dry deposition velocity and scavenging ratio for NO3- were relatively constant near the coast. Compared to the coast, the inland snow shows a relatively weak correlation between archived NO3- and snow accumulation, and the archived NO3- fluxes were more dependent on concentration. The relationship between NO3- and coexisting ions (nssSO42-, Na+ and Cl−) was also investigated, and the results show a correlation between nssSO42- (fine aerosol particles) and NO3- in surface snow, while the correlation between NO3- and Na+ (mainly associated with coarse aerosol particles) is not significant. In inland snow, there were no significant relationships found between NO3- and the coexisting ions, suggesting a dominant role of NO3- recycling in determining the concentrations.


2008 ◽  
Vol 48 ◽  
pp. 113-118 ◽  
Author(s):  
Zhang Shengkai ◽  
E Dongchen ◽  
Wang Zemin ◽  
Li Yuansheng ◽  
Jin Bo ◽  
...  

AbstractDome A, the highest point on the Antarctic ice sheet at just over 4000 ma.s.l., is located near the centre of East Antarctica. Chinese National Antarctic Research Expeditions have studied ice-sheet dynamics and mass balance along a traverse route from Zhongshan station to Dome A during the austral summers from 1996/97 to 2004/05. Nineteen GPS sites were occupied on at least two occasions at approximately 50 km intervals. The purpose of the surveys was to provide accurate ice-dynamics data. A dual-frequency GPS receiver was used and each site was occupied for 1–12 hours. GPS data were processed using GAMIT/GLOBK software, and horizontal accuracies were within 0.1 m. Repeat GPS measurements provided ice velocities. The horizontal surface ice velocities increase from the summit of the ice sheet to the coast. In the Dome A area, the velocities are <10ma–1; in the plateau area, velocities range from 8 to 24 ma–1 and reach about 98.2 ma–1 at a site (LT980) near the coast. The flow directions are roughly perpendicular to the ice-sheet surface elevation contours, primarily toward the Lambert Glacier basin.


Sign in / Sign up

Export Citation Format

Share Document