Supplementary material to "Modelling last glacial cycle ice dynamics in the Alps"

Author(s):  
Julien Seguinot ◽  
Guillaume Jouvet ◽  
Matthias Huss ◽  
Martin Funk ◽  
Susan Ivy-Ochs ◽  
...  
2018 ◽  
Vol 12 (10) ◽  
pp. 3265-3285 ◽  
Author(s):  
Julien Seguinot ◽  
Susan Ivy-Ochs ◽  
Guillaume Jouvet ◽  
Matthias Huss ◽  
Martin Funk ◽  
...  

Abstract. The European Alps, the cradle of pioneering glacial studies, are one of the regions where geological markers of past glaciations are most abundant and well-studied. Such conditions make the region ideal for testing numerical glacier models based on simplified ice flow physics against field-based reconstructions and vice versa. Here, we use the Parallel Ice Sheet Model (PISM) to model the entire last glacial cycle (120–0 ka) in the Alps, using horizontal resolutions of 2 and 1 km. Climate forcing is derived using two sources: present-day climate data from WorldClim and the ERA-Interim reanalysis; time-dependent temperature offsets from multiple palaeo-climate proxies. Among the latter, only the European Project for Ice Coring in Antarctica (EPICA) ice core record yields glaciation during marine oxygen isotope stages 4 (69–62 ka) and 2 (34–18 ka). This is spatially and temporally consistent with the geological reconstructions, while the other records used result in excessive early glacial cycle ice cover and a late Last Glacial Maximum. Despite the low variability of this Antarctic-based climate forcing, our simulation depicts a highly dynamic ice sheet, showing that Alpine glaciers may have advanced many times over the foreland during the last glacial cycle. Ice flow patterns during peak glaciation are largely governed by subglacial topography but include occasional transfluences through the mountain passes. Modelled maximum ice surface is on average 861 m higher than observed trimline elevations in the upper Rhône Valley, yet our simulation predicts little erosion at high elevation due to cold-based ice. Finally, despite the uniform climate forcing, differencesin glacier catchment hypsometry produce a time-transgressive Last Glacial Maximum advance, with some glaciers reaching their modelled maximum extent as early as 27 ka and others as late as 21 ka.


1997 ◽  
Vol 25 ◽  
pp. 58-65 ◽  
Author(s):  
L. Tarasov ◽  
W. R. Peltier

Significant improvements to the representation of climate forcing and mass-balance response in a coupled two-dimensional global energy balance climate model (EBM) and vertically integrated ice-sheet model (ISM) have led to the prediction of an ice-volume chronology for the most recent ice-age cycle of the Northern Hemisphere that is close to that inferred from the geological record. Most significant is that full glacial termination is delivered by the model without the need for new physical ingredients. In addition, a relatively close match is achieved between the Last Glacial Maximum (LGM) model ice topography and that of the recently-described ICE-4G reconstruction. These results suggest that large-scale climate system reorganization is not required to explain the main variations of the North American (NA) ice sheets over the last glacial cycle. Lack of sea-ice and marine-ice dynamics in the model leaves the situation over the Eurasian (EA) sector much more uncertain.The incorporation of a gravitationally self-consistent description of the glacial isostatic adjustment process demonstrates that the NA and EA bedrock responses can be adequately represented by simpler damped-relaxation models with characteristic time-scales of 3–5ka and 5 ka, respectively. These relaxation times agree with those independently inferred on the basis of postglacial relative sea-level histories.


1997 ◽  
Vol 25 ◽  
pp. 58-65 ◽  
Author(s):  
L. Tarasov ◽  
W. R. Peltier

Significant improvements to the representation of climate forcing and mass-balance response in a coupled two-dimensional global energy balance climate model (EBM) and vertically integrated ice-sheet model (ISM) have led to the prediction of an ice-volume chronology for the most recent ice-age cycle of the Northern Hemisphere that is close to that inferred from the geological record. Most significant is that full glacial termination is delivered by the model without the need for new physical ingredients. In addition, a relatively close match is achieved between the Last Glacial Maximum (LGM) model ice topography and that of the recently-described ICE-4G reconstruction. These results suggest that large-scale climate system reorganization is not required to explain the main variations of the North American (NA) ice sheets over the last glacial cycle. Lack of sea-ice and marine-ice dynamics in the model leaves the situation over the Eurasian (EA) sector much more uncertain.The incorporation of a gravitationally self-consistent description of the glacial isostatic adjustment process demonstrates that the NA and EA bedrock responses can be adequately represented by simpler damped-relaxation models with characteristic time-scales of 3–5ka and 5 ka, respectively. These relaxation times agree with those independently inferred on the basis of postglacial relative sea-level histories.


2021 ◽  
Vol 9 (4) ◽  
pp. 923-935
Author(s):  
Julien Seguinot ◽  
Ian Delaney

Abstract. The glacial landscape of the Alps has fascinated generations of explorers, artists, mountaineers, and scientists with its diversity, including erosional features of all scales from high-mountain cirques to steep glacial valleys and large overdeepened basins. Using previous glacier modelling results and empirical inferences of bedrock erosion under modern glaciers, we compute a distribution of potential glacier erosion in the Alps over the last glacial cycle from 120 000 years ago to the present. Despite large uncertainties pertaining to the climate history of the Alps and unconstrained glacier erosion processes, the resulting modelled patterns of glacier erosion include persistent features. The cumulative imprint of the last glacial cycle shows a very strong localization of erosion potential with local maxima at the mouths of major Alpine valleys and some other upstream sections where glaciers are modelled to have flowed with the highest velocity. The potential erosion rates vary significantly through the glacial cycle but show paradoxically little relation to the total glacier volume. Phases of glacier advance and maximum extension see a localization of rapid potential erosion rates at low elevation, while glacier erosion at higher elevation is modelled to date from phases of less extensive glaciation. The modelled erosion rates peak during deglaciation phases, when frontal retreat results in steeper glacier surface slopes, implying that climatic conditions that result in rapid glacier erosion might be quite transient and specific. Our results depict the Alpine glacier erosion landscape as a time-transgressive patchwork, with different parts of the range corresponding to different glaciation stages and time periods.


2017 ◽  
Author(s):  
Marie G.~P. Cavitte ◽  
Frédéric Parrenin ◽  
Catherine Ritz ◽  
Duncan A. Young ◽  
Donald D. Blankenship ◽  
...  

2020 ◽  
Author(s):  
Pierre-Olivier Couette ◽  
Patrick Lajeunesse ◽  
Boris Dorschel ◽  
Catalina Gebhardt ◽  
Dierk Hebbeln ◽  
...  

<p>The maximal extent and subsequent deglaciation of the Laurentide Ice Sheet (LIS) across eastern Baffin Island during the last glacial cycle (MIS-2) has been widely debated during the last decades as different palaeo-glaciological models have been proposed. Spatial and temporal variability of ice sheets extension during Quaternary glaciations complicate the establishment of a reliable reconstruction of the ice dynamics in the area. Furthermore, the lack of geophysical data in most of the fjords, and seaward, makes it difficult to reconcile the proposed terrestrial and marine glacial margins. High-resolution swath-bathymetric data, collected between 2003 and 2017, display a diversity of glacial bedforms in the Clyde Inlet fjord-cross-shelf-trough system (Eastern Baffin Island, Arctic Canada). These bedforms reveal a potential position of the LIS margin during the Last Glacial Maximum (LGM) near the shelf break. Early deglaciation of the Clyde Trough was marked by an initial break up of the ice sheet. This rapid retreat of the ice margin was punctuated by episodic stabilizations forming GZWs. This retreat was followed by a readvance and subsequent slow retreat of the LIS, as indicated by the presence of recessional moraines. Long-term stabilizations within the trough possibly coincided with major climatic cooling episodes, such as the end of Heinrich event 1 (H1) and the Younger Dryas. However, these stabilizations appear to have been influenced by topography, as GZWs can be found at pinning points in the trough. Deglaciation of the fjord occurred during the early Holocene and was faster, probably due to increased water depths. The presence of multiple moraine systems however indicate that deglaciation of Clyde Inlet was marked by stages of ice margin stabilization.</p>


2021 ◽  
Author(s):  
Julien Seguinot ◽  
Ian Delaney

Abstract. The glacial landscape of the Alps has fascinated generations of explorers, artists, mountaineers and scientists with its diversity, including erosional features of all scales from high-mountain cirques, to steep glacial valleys and large over-deepened basins. Using previous glacier modelling results, and empirical inferences of bedrock erosion under modern glaciers, we compute a distribution of potential glacier erosion in the Alps over the last glacial cycle from 120 000 years ago to the present. Despite large uncertainties pertaining to the climate history of the Alps and unconstrained glacier erosion processes, the resulting modelled patterns of glacier erosion include persistent features. The cumulative imprint of the last glacial cycle shows a very strong localization of glacier erosion with local maxima at the mouths of major Alpine valleys and some other upstream sections where glaciers are modelled to have flown with the highest velocity. The modelled erosion rates vary significantly through the glacial cycle, but show paradoxically little relation to the total glacier volume. Phases of glacier advance and maximum extension see a localization of rapid erosion rates at low elevation, while glacier erosion at higher elevation is modelled date from phases of less extensive glaciation. The modelled erosion rates peak during deglaciation phases, when frontal retreat results in steeper glacier surface slopes, implying that climatic conditions that result in rapid glacier erosion might be quite transient and specific. Our results depict the Alpine glacier erosion landscape as a time-transgressive patchwork, with different parts of the range corresponding to different glaciation stages and time periods.


Sign in / Sign up

Export Citation Format

Share Document