scholarly journals A high-resolution model of the 100 ka ice-age cycle

1997 ◽  
Vol 25 ◽  
pp. 58-65 ◽  
Author(s):  
L. Tarasov ◽  
W. R. Peltier

Significant improvements to the representation of climate forcing and mass-balance response in a coupled two-dimensional global energy balance climate model (EBM) and vertically integrated ice-sheet model (ISM) have led to the prediction of an ice-volume chronology for the most recent ice-age cycle of the Northern Hemisphere that is close to that inferred from the geological record. Most significant is that full glacial termination is delivered by the model without the need for new physical ingredients. In addition, a relatively close match is achieved between the Last Glacial Maximum (LGM) model ice topography and that of the recently-described ICE-4G reconstruction. These results suggest that large-scale climate system reorganization is not required to explain the main variations of the North American (NA) ice sheets over the last glacial cycle. Lack of sea-ice and marine-ice dynamics in the model leaves the situation over the Eurasian (EA) sector much more uncertain.The incorporation of a gravitationally self-consistent description of the glacial isostatic adjustment process demonstrates that the NA and EA bedrock responses can be adequately represented by simpler damped-relaxation models with characteristic time-scales of 3–5ka and 5 ka, respectively. These relaxation times agree with those independently inferred on the basis of postglacial relative sea-level histories.

1997 ◽  
Vol 25 ◽  
pp. 58-65 ◽  
Author(s):  
L. Tarasov ◽  
W. R. Peltier

Significant improvements to the representation of climate forcing and mass-balance response in a coupled two-dimensional global energy balance climate model (EBM) and vertically integrated ice-sheet model (ISM) have led to the prediction of an ice-volume chronology for the most recent ice-age cycle of the Northern Hemisphere that is close to that inferred from the geological record. Most significant is that full glacial termination is delivered by the model without the need for new physical ingredients. In addition, a relatively close match is achieved between the Last Glacial Maximum (LGM) model ice topography and that of the recently-described ICE-4G reconstruction. These results suggest that large-scale climate system reorganization is not required to explain the main variations of the North American (NA) ice sheets over the last glacial cycle. Lack of sea-ice and marine-ice dynamics in the model leaves the situation over the Eurasian (EA) sector much more uncertain.The incorporation of a gravitationally self-consistent description of the glacial isostatic adjustment process demonstrates that the NA and EA bedrock responses can be adequately represented by simpler damped-relaxation models with characteristic time-scales of 3–5ka and 5 ka, respectively. These relaxation times agree with those independently inferred on the basis of postglacial relative sea-level histories.


2014 ◽  
Vol 10 (4) ◽  
pp. 1489-1500 ◽  
Author(s):  
N. Korhonen ◽  
A. Venäläinen ◽  
H. Seppä ◽  
H. Järvinen

Abstract. Earth system models of intermediate complexity (EMICs) have proven to be able to simulate the large-scale features of glacial–interglacial climate evolution. For many climatic applications the spatial resolution of the EMICs' output is, however, too coarse, and downscaling methods are needed. In this study we introduce a way to use generalized additive models (GAMs) for downscaling the large-scale output of an EMIC in very different climatological conditions ranging from glacial periods to current relatively warm climates. GAMs are regression models in which a combination of explanatory variables is related to the response through a sum of spline functions. We calibrated the GAMs using observations of the recent past climate and the results of short time-slice simulations of glacial climate performed by the relatively high-resolution general circulation model CCSM (Community Climate System Model) and the regional climate model RCA3 (Rossby Centre regional Atmospheric climate model). As explanatory variables we used the output of a simulation by the CLIMBER-2 (CLIMate and BiosphERe model 2) EMIC of the last glacial cycle, coupled with the SICOPOLIS (SImulation COde for POLythermal Ice Sheets) ice sheet model, i.e. the large-scale temperature and precipitation data of CLIMBER-2, and the elevation, distance to ice sheet, slope direction and slope angle from SICOPOLIS. The fitted GAMs were able to explain more than 96% of the temperature response with a correlation of >0.98 and more than 59% of the precipitation response with a correlation of >0.72. The first comparison with two pollen-based reconstructions of temperature for Northern Europe showed that CLIMBER-2 data downscaled by GAMs corresponded better with the reconstructions than did the bilinearly interpolated CLIMBER-2 surface temperature.


1999 ◽  
Vol 52 (3) ◽  
pp. 300-315 ◽  
Author(s):  
Shawn J. Marshall ◽  
Garry K.C. Clarke

The Northern Hemisphere ice sheets decayed rapidly during deglacial phases of the ice-age cycle, producing meltwater fluxes that may have been of sufficient magnitude to perturb oceanic circulation. The continental record of ice-sheet history is more obscured during the growth and advance of the last great ice sheets, ca. 120,000–20,000 yr B.P., but ice cores tell of high-amplitude, millennial-scale climate fluctuations that prevailed throughout this period. These climatic excursions would have provoked significant fluctuation of ice-sheet margins and runoff variability whenever ice sheets extended to mid-latitudes, giving a complex pattern of freshwater delivery to the oceans. A model of continental surface hydrology is coupled with an ice-dynamics model simulating the last glacial cycle in North America. Meltwater discharged from ice sheets is either channeled down continental drainage pathways or stored temporarily in large systems of proglacial lakes that border the retreating ice-sheet margin. The coupled treatment provides quantitative estimates of the spatial and temporal patterns of freshwater flux to the continental margins. Results imply an intensified surface hydrological environment when ice sheets are present, despite a net decrease in precipitation during glacial periods. Diminished continental evaporation and high levels of meltwater production combine to give mid-latitude runoff values that are highly variable through the glacial cycle, but are two to three times in excess of modern river fluxes; drainage to the North Atlantic via the St. Lawrence, Hudson, and Mississippi River catchments averages 0.356 Sv for the period 60,000–10,000 yr B.P., compared to 0.122 Sv for the past 10,000 yr. High-amplitude meltwater pulses to the Gulf of Mexico, North Atlantic, and North Pacific occur throughout the glacial period, with ice-sheet geometry controlling intricate patterns of freshwater routing variability. Runoff from North America is staged in the final deglaciation, with a stepped sequence of pulses through the Mississippi, St. Lawrence, Arctic, and Hudson Strait drainages.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


1996 ◽  
Vol 22 ◽  
pp. 75-84 ◽  
Author(s):  
G. S. Boulton

A theory of erosion and deposition as a consequence of subglacial sediment deformation over beds of unlithified sediment is reviewed and applied to large-scale till sequences formed on the southern flanks of the North American and British and European ice sheets during the last glacial cycle. The distribution of till thickness, till lithology in relation to source materials and intra-till erosion surfaces along a flowline in the Michigan lobe of the North American ice sheet are shown to be compatible with the deformational theory but not with other modes of till genesis. It is then demonstrated, in the case of the British ice sheet, how the assumption of a deformational origin for tills can be used to infer time-dependent patterns of ice-sheet dynamic behaviour. By reference to an example from the Netherlands, it is argued that many till sequences interpreted as melt-out tills are more likely to have formed by subglacial sediment deformation.


2004 ◽  
Vol 359 (1442) ◽  
pp. 173-181 ◽  
Author(s):  
Henry Hooghiemstra ◽  
Thomas Van der Hammen

Pollen records from lacustrine sediments of deep basins in the Colombian Andes provide records of vegetation history, the development of the floristic composition of biomes, and climate variation with increasing temporal resolution. Local differences in the altitudinal distribution of present–day vegetation belts in four Colombian Cordilleras are presented. Operating mechanisms during Quaternary Ice–Age cycles that stimulated speciation are discussed by considering endemism in the asteraceous genera Espeletia , Espeletiopsis and Coespeletia . The floristically diverse lower montane forest belt (1000–2300 m) was compressed by ca . 55% during the last glacial maximum (LGM) (20 ka), and occupied the slopes between 800 m and 1400 m during that period. Under low LGM atmospheric p CO 2 values, C 4 –dominated vegetation, now occurring below 2200 m, expanded up to ca. 3500 m. Present–day C 3 –dominated paramo vegetation is therefore not an analogue for past C 4 –dominated vegetation (with abundant Sporobolus lasiophyllus ). Quercus immigrated into Colombia 478 ka and formed an extensive zonal forest from 330 ka when former Podocarpus –dominated forest was replaced by zonal forest with Quercus and Weinmannia . During the last glacial cycle the ecological tolerance of Quercus may have increased. In the ecotone forests Quercus was rapidly and massively replaced by Polylepis between 45 and 30 ka illustrating complex forest dynamics in the tropical Andes.


2014 ◽  
Vol 10 (4) ◽  
pp. 1453-1471 ◽  
Author(s):  
M. Löfverström ◽  
R. Caballero ◽  
J. Nilsson ◽  
J. Kleman

Abstract. We present modelling results of the atmospheric circulation at the cold periods of marine isotope stage 5b (MIS 5b), MIS 4 and the Last Glacial Maximum (LGM), as well as the interglacial. The palaeosimulations are forced by ice-sheet reconstructions consistent with geological evidence and by appropriate insolation and greenhouse gas concentrations. The results suggest that the large-scale atmospheric winter circulation remained largely similar to the interglacial for a significant part of the glacial cycle. The proposed explanation is that the ice sheets were located in areas where their interaction with the mean flow is limited. However, the LGM Laurentide Ice Sheet induces a much larger planetary wave that leads to a zonalisation of the Atlantic jet. In summer, the ice-sheet topography dynamically induces warm temperatures in Alaska and central Asia that inhibits the expansion of the ice sheets into these regions. The warm temperatures may also serve as an explanation for westward propagation of the Eurasian Ice Sheet from MIS 4 to the LGM.


2021 ◽  
Author(s):  
Helen Eri Amsler ◽  
Lena Mareike Thöle ◽  
Ingrid Stimac ◽  
Walter Geibert ◽  
Minoru Ikehara ◽  
...  

Abstract. We present downcore records of redox-sensitive authigenic uranium (U) and manganese (Mn) concentrations based on five marine sediment cores spanning a meridional transect encompassing the Subantarctic and the Antarctic zones in the Southwest Indian Ocean covering the last glacial cycle. These records signal lower bottom water oxygenation during glacial climate intervals and generally higher oxygenation during warm periods, consistent with climate-related changes in deep ocean remineralised carbon storage. Regional changes in the export of siliceous phytoplankton to the deep-sea may have entailed a secondary influence on oxygen levels at the water-sediment interface, especially in the Subantarctic Zone. The rapid reoxygenation during the deglaciation is in line with increased ventilation and enhanced upwelling after the Last Glacial Maximum (LGM), which, in combination, conspired to transfer previously sequestered remineralised carbon to the surface ocean and the atmosphere, contributing to propel the Earth’s climate out of the last ice age. These records highlight the yet insufficiently documented role the southern Indian Ocean played in the air-sea partitioning of CO2 on glacial-interglacial timescales.


Sign in / Sign up

Export Citation Format

Share Document