scholarly journals The American monsoon system in HadGEM3 and UKESM1

2020 ◽  
Vol 1 (2) ◽  
pp. 349-371
Author(s):  
Jorge L. García-Franco ◽  
Lesley J. Gray ◽  
Scott Osprey

Abstract. The simulated climate of the American monsoon system (AMS) in the UK models HadGEM3 GC3.1 (GC3) and the Earth system model UKESM1 is assessed and compared to observations and reanalysis. We evaluate the pre-industrial control, AMIP and historical experiments of UKESM1 and two configurations of GC3: a low (1.875∘×1.25∘) and a medium (0.83∘×0.56∘) resolution. The simulations show a good representation of the seasonal cycle of temperature in monsoon regions, although the historical experiments overestimate the observed summer temperature in the Amazon, Mexico and Central America by more than 1.5 K. The seasonal cycle of rainfall and general characteristics of the North American monsoon of all the simulations agree well with observations and reanalysis, showing a notable improvement from previous versions of the HadGEM model. The models reasonably simulate the bimodal regime of precipitation in southern Mexico, Central America and the Caribbean known as the midsummer drought, although with a stronger-than-observed difference between the two peaks of precipitation and the dry period. Austral summer biases in the modelled Atlantic Intertropical Convergence Zone (ITCZ), cloud cover and regional temperature patterns are significant and influence the simulated regional rainfall in the South American monsoon. These biases lead to an overestimation of precipitation in southeastern Brazil and an underestimation of precipitation in the Amazon. The precipitation biases over the Amazon and southeastern Brazil are greatly reduced in the AMIP simulations, highlighting that the Atlantic sea surface temperatures are key for representing precipitation in the South American monsoon. El Niño–Southern Oscillation (ENSO) teleconnections, of precipitation and temperature, to the AMS are reasonably simulated by all the experiments. The precipitation responses to the positive and negative phase of ENSO in subtropical America are linear in both pre-industrial and historical experiments. Overall, the biases in UKESM1 and the low-resolution configuration of GC3 are very similar for precipitation, ITCZ and Walker circulation; i.e. the inclusion of Earth system processes appears to make no significant difference for the representation of the AMS rainfall. In contrast, the medium-resolution HadGEM3 N216 simulation outperforms the low-resolution simulations due to improved SSTs and circulation.

2020 ◽  
Vol 47 (14) ◽  
Author(s):  
Alicia Hou ◽  
André Bahr ◽  
Jacek Raddatz ◽  
Silke Voigt ◽  
Markus Greule ◽  
...  

Quaternary ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 6 ◽  
Author(s):  
Michael Deininger ◽  
Brittany Marie Ward ◽  
Valdir F. Novello ◽  
Francisco W. Cruz

Here we present an overview of speleothem δ18O records from South America, most of which are available in the Speleothem Isotopes Synthesis and Analysis (SISAL_v1) database. South American tropical and subtropical speleothem δ18O time series are primarily interpreted to reflect changes in precipitation amount, the amount effect, and consequently history of convection intensity variability of convergence zones such as the Intertropical Convergence Zone (ITCZ) and the South America Monsoon System (SAMS). We investigate past hydroclimate scenarios in South America related to the South American Monsoon System in three different time periods: Late Pleistocene, Holocene, and the last two millennia. Precession driven summertime insolation is the main driver of convective variability over the continent during the last 120 kyrs (from present day to 120 kyrs BP), including the Holocene. However, there is a dipole between speleothem δ18O records from western and eastern South America. Records located in the central region of Brazil are weakly affected by insolation-driven variability, and instead are more susceptible to the variability associated with the South Atlantic Convergence Zone (SACZ). Cold episodic events in the Northern Hemisphere, such as Heinrich and Bond Events, and the Little Ice Age, increase the convective activity of the SAMS, resulting in increased precipitation amount in South America.


2016 ◽  
Vol 130 (1-2) ◽  
pp. 233-247
Author(s):  
Sâmia R. Garcia ◽  
Mary T. Kayano ◽  
Alan J. P. Calheiros ◽  
Rita Valéria Andreoli ◽  
Rodrigo Augusto Ferreira de Souza

2012 ◽  
Vol 25 (6) ◽  
pp. 1883-1889 ◽  
Author(s):  
Charles Jones ◽  
Leila M. V. Carvalho ◽  
Brant Liebmann

Abstract The South American monsoon system (SAMS) is the most important climatic feature in South America and is characterized by pronounced seasonality in precipitation. This study uses the National Centers for Environmental Prediction Climate Forecast System, reforecasts version 2 (CFSRv2), to investigate the skill of probabilistic forecasts of onset and demise dates, duration, and amplitude of SAMS during 1982–2009. A simple index based on the empirical orthogonal function of precipitation anomalies is employed to characterize onsets, demises, durations, and amplitudes of SAMS. The CFSv2 model has useful skill to forecast seasonal changes in SAMS. Probabilistic forecasts of onset and demise dates have 16.5% and 43.3% improvements, respectively, over climatological forecasts. Verification of hindcasts of durations and amplitudes of SAMS shows relatively small biases and root-mean-square errors.


Sign in / Sign up

Export Citation Format

Share Document