Linux: A bazaar at the edge of chaos (originally published in Volume 5, Number 3, March 2000)

First Monday ◽  
2005 ◽  
Author(s):  
Ko Kuwabara

This paper establishes a context for the work of Eric Raymond and his description of the Linux phenomenon, by examining the emerging science of complex adaptive systems pioneered by John Holland, Christopher Langton, Robert Axelrod, among others. Raymond's evolutionary view is given an extended and more formal treatment under the terms of chaos and complexity, and chaos and complexity under the terms of sociology. In addition, this paper presents an ethnographic account of Linux, amassed from a series of electronic mail interviews with kernel developers. These interviews examine Linux as a social phenomena, which has prompted wide interest and become a subject of heated discussion. Comments and feedback of this paper can be found at http://www.cukezone.com/kk49/linux/contents.html

Author(s):  
J. Stephen Lansing

Complex adaptive systems, as conceived by John Holland, are groups of agents engaged in a process of coadaptation, in which adaptive moves by individuals have consequences for the group. Holland and others have shown that under certain circumstances simple models of this process show surprising abilities to self-organize (Holland 1993; Kauffman 1993). Complex adaptive systems have interesting mathematical properties, and the process of "anti-chaos"-—the spontaneous crystallization of ordered patterns in initially disordered networks— has become a new area of interdisciplinary research. But the question of whether these models can illuminate real world processes is still largely open. Not long ago John Maynard Smith described the study of complex adaptive systems as "fact-free science" (1995). This chapter has two purposes. First, in response to Maynard Smith, I will show how the concept of ecological feedback in complex adaptive systems provides a simple and powerful explanation for the structure and persistence of cooperative networks among Balinese rice farmers. Second, I will generalize this explanation to shed light on the emergence of cooperation in a class of social systems where interactions with the natural world create both rewards and punishments. But before turning to these examples, in line with the purposes of this volume I will comment on the ideas and assumptions that underlie the use of models in this analysis. "Society is a human product. Society is an objective reality. Man [sic] is a social product." With this epigram Peter Berger and Thomas Luckmann neatly encapsulated a fundamental problem in social theory (1967:61). In American anthropology today this paradox is often posed as a conflict between "structure" and "agency," where the former refers to ideational, economic, institutional, or psychological systems that are represented as generating social reality; and the latter to the ability of individual social actors to modify their own social worlds. The same paradox recurs in classical social theory, such as Jürgen Habermas' insistence on the need to somehow reconcile actor-focused and system-level social theories (Habermas 1985, 1987).


2001 ◽  
Vol 20 (4) ◽  
pp. 281-289 ◽  
Author(s):  
Liang Thow Yick

Organizing around intrinsic intelligence is a new paradigm that all human organizations must adopt if they wish to evolve successfully in the emerging intelligence revolution. This fresh mindset perceives human systems as intelligent corporate beings possessing an orgmind and a collective intelligence of their own. Intelligence is the entity that drives the universe and its microcosms. Some attributes associated with human intelligence are mindfulness, information processing, knowledge structuring, and nonlinearity. Nonlinearity, in particular, is manifested because the inherent sources of intelligence, the human minds, are complex adaptive systems where order and disorder co-exist. Human organizations that are intelligent are able to tap on and exploit these characteristics collectively and effectively. Consequently, these organizations are able to learn, adapt, self-organize and co-evolve quickly with their environment as biological beings. Their intelligent structure is also better at exploiting the innovative and creative energy embedded at the edge of chaos.


This book is a collection of essays exploring adaptive systems from many perspectives, ranging from computational applications to models of adaptation in living and social systems. The essays on computation discuss history, theory, applications, and possible threats of adaptive and evolving computations systems. The modeling chapters cover topics such as evolution in microbial populations, the evolution of cooperation, and how ideas about evolution relate to economics. The title Perspectives on Adaptation in Natural and Artificial Systems honors John Holland, whose 1975 Book, Adaptation in Natural and Artificial Systems has become a classic text for many disciplines in which adaptation play a central role. The essays brought together here were originally written to honor John Holland, and span most of the different areas touched by his wide-ranging and influential research career. The authors include some of the most prominent scientists in the fields of artificial intelligence evolutionary computation, and complex adaptive systems. Taken together, these essays present a broad modern picture of current research on adaptation as it relates to computers, living systems, society, and their complex interactions.


Sign in / Sign up

Export Citation Format

Share Document