scholarly journals Effect of the Work Week on Demographics of Heat-Related Illness Patients in Syndromic Surveillance

2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Em Stephens

ObjectiveTo describe the differences in patient populations between those who seek care for heat exposure during the work week and those who seek care during the weekend.IntroductionAs global temperatures increase, so too does interest in the effect of climate change on the population’s health. 2016 represented the hottest year on record globally and well above the 20th century average in Virginia.1,2 With large-scale climate change comes an increase in severe weather patterns, including heat waves.3 Heat waves can have immense health impacts on a community, including heat stroke, heat exhaustion, and dehydration.Previous analyses of emergency department (ED) data indicate that certain populations – specifically males and rural residents – are more at risk for heat-related illness.4,5 None of these studies, however, looked for temporal relationships between the population seeking care and the day of the week. Syndromic surveillance data can be used to further describe those communities affected by heat exposure as well as identify any temporal patterns in visits.MethodsThe Virginia Department of Health (VDH) receives data from 148 EDs and urgent care centers (UCCs) as part of its syndromic surveillance program. During regular surveillance of a heat wave, it was observed that males made up a larger proportion of heat-related visits during the week than they did over the weekend. Data received on visits between January 1, 2015 and July 31, 2017 were used for a retrospective, cross-sectional analysis of demographic risk factors for heat-related illness. During this time frame, 6,739 visits were identified using the September 2016 Council for State and Territorial Epidemiologists (CSTE) syndrome definition for heat-related illness.6The effect of various demographics and visit factors on weekday heat exposure was measured using chi-squared tests. The variables in question included sex, race, ethnicity, rural vs. urban residence, and age group. Odds ratios, 95% confidence intervals, and p-values were reported for these analyses. Analyses were conducted using SAS 9.3 with a significance level of 0.05.ResultsOf the total 6,739 visits identified for heat-related illness, 4,782 (71.0%) occurred during the work week and 1,957 (29.0%) occurred on the weekend. The odds of seeking care for heat-related illness on a weekday were 1.84 times higher for males than for females, p < 0.001, 95% CI [1.65, 2.06]. Blacks or African Americans were more likely to seek care than whites during the work week with an odds ratio of 1.38, p < 0.001. 95% CI [1.20, 1.57]. Adults aged 18-64 years were more likely to seek care during the work week than both children aged 0-17 years (OR = 1.61, p < 0.001, 95% CI [1.37, 1.89]) and adults aged 65 years or older (OR = 1.36, p < 0.001, 95% CI [1.17, 1.58]). No significant relationship between ethnicity or rural vs. urban residence and work week visits for heat-related illness was observed.ConclusionsThe patient population that seeks care for heat-related illness differs between the work week and the weekend. These data suggest the presence of potential mediators or confounders that make males, blacks or African Americans, and adults aged 18-64 more likely to suffer from heat-related illness during the week. Collecting data on patients’ health behaviors, risk factors, and occupation could further elucidate this relationship. Syndromic surveillance, however, does not include the level of detail needed to investigate anything beyond basic demographics.With an increase in the intensity and frequency of heat waves on the horizon, the issue of heat-related illness is one of growing public health concern. Syndromic surveillance data can be used to describe patterns in the patient population most at risk. Public health action is then needed to protect these communities while further research explores the relationships in greater depth.References1 Nuccitelli, D. (2017, July 31). 2017 is so far the second-hottest year on record thanks to global warming. The Guardian. Retrieved from http://bit.ly/2vkPZpg2 Boyer, J. (2017, January 18). 2016 was the planet’s warmest year in modern records, but it wasn’t for Richmond or even Va. Richmond Times-Dispatch. Retrieved from http://bit.ly/2jptCKg3 Duffy, P. B. (2012, January 21). Increasing prevalence of extreme summer temperatures in the U.S. Climate Change, 111(2), 487-495. https://doi.org/10.1007/s10584-012-0396-64 Hess, J. J., Saha, S., & Luber, G. (2014 November). Summertime Acute Heat Illness in U.S. Emergency Departments from 2006 through 2010: Analysis of a Nationally Representatitve Sample. Environmental Health Perspectives 122(11), 1209. http://dx.doi.org.proxy.library.vcu.edu/10.1289/ehp.13067965 Sanchez, C. A., Thomas, K. E., Malilay, J., & Annest, J. L. (2010, January). Nonfatal natural and environmental injuries treated in emergency departments, United States, 2001-2004. Family & Community Health 33(1), 3-10. doi:10.1097/FCH.0b013e3181c4e2fa6 Berisha, V., Braun, C. R., Cameron, L., Hoppe, B., Lane, K., Mamou, F., Menager, H., Roach, M., White, J. R., Wurster, J. (2016, September). Heat-Related Illness Syndrome Query: A Guidance Document for Implementing Heat-Related Illness Syndromic Surveillance in Public Health Practice. Retrieved from http://bit.ly/2w884aJ

2016 ◽  
Vol 22 (Suppl 1) ◽  
pp. i43-i49 ◽  
Author(s):  
Amy Ising ◽  
Scott Proescholdbell ◽  
Katherine J Harmon ◽  
Nidhi Sachdeva ◽  
Stephen W Marshall ◽  
...  

Author(s):  
Mark Maslin

What is dangerous climate change? What is our coping range? ‘Climate change impacts’ assesses the potential effects of climate change on the natural environment as well as on human societies and our economies. Climate change impacts will increase significantly as global temperature rises. Climate change will affect the return period and severity of floods, droughts, heat waves, and storms. Coastal cities and towns will be especially vulnerable as sea-level rise will worsen the effects of floods and storm surges. Water and food security and public health will become the most important problems facing all countries. Climate change also threatens global biodiversity and the well being of billions of people.


Author(s):  
Melissa Matlock ◽  
Suellen Hopfer ◽  
Oladele A. Ogunseitan

Valley Fever, or Coccidioidomycosis, a fungal respiratory disease, is prevalent with increasing incidence in the Southwestern United States, especially in the central region of California. Public health agencies in the region do not have a consistent strategy for communication and health promotion targeting vulnerable communities about this climate-sensitive disease. We used the behavior adaptation communication model to design and conduct semi-structured interviews with representatives of public health agencies in five California counties: Fresno, Kern, Kings, San Luis Obispo, and Tulare County. While none of the agencies currently include climate change information into their Valley Fever risk messaging, the agencies discuss future communication methods similar to other health risk factors such as poor air quality days and influenza virus season. For political reasons, some public health agencies deliberately avoided the use of climate change language in communicating health risk factors to farmers who are particularly vulnerable to soil and dust-borne fungal spores. The effectiveness of health communication activities of the public health agencies has not been measured in reducing the prevalence of Valley Fever in impacted communities. Given the transboundary nature of climate influence on Valley Fever risk, a concerted and consistent health communication strategy is expected to be more effective than current practices.


2019 ◽  
Vol 70 (11) ◽  
pp. 2428-2431
Author(s):  
Laura A Cooley ◽  
Tracy Pondo ◽  
Louise K Francois Watkins ◽  
Priti Shah ◽  
Stephanie Schrag ◽  
...  

Abstract We used US population-based surveillance data to characterize clinical risk factors for Legionnaires’ disease (LD). The LD incidence increased by age and the risk was elevated for 12 clinical conditions, when compared to healthy adults. This information can be used to guide testing, treatment, and public health prevention efforts.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Mansi Agarwal ◽  
Nimi Idaikkadar ◽  
José Lojo ◽  
Kristen Soto ◽  
Robert Mathes

This roundtable will discuss successful syndromic surveillance data sharing efforts that have been used on a local scale for faster, more efficient, and long-term collaboration between neighboring public health jurisdictions.


Author(s):  
Yiling He ◽  
Rui Ma ◽  
Meng Ren ◽  
Wenmin Liao ◽  
Na Zhang ◽  
...  

2019 ◽  
Vol 13 (4) ◽  
pp. e0007322 ◽  
Author(s):  
Catherine A. Lippi ◽  
Anna M. Stewart-Ibarra ◽  
M. E. Franklin Bajaña Loor ◽  
Jose E. Dueñas Zambrano ◽  
Nelson A. Espinoza Lopez ◽  
...  

2020 ◽  
Vol 110 (8) ◽  
pp. 1157-1159 ◽  
Author(s):  
Steven S. Coughlin ◽  
Justin Xavier Moore ◽  
Varghese George ◽  
J. Aaron Johnson ◽  
Joseph Hobbs

Many serious adverse public health impacts of climate change are already being felt around the globe, including record-breaking heat waves, severe air pollution, widespread water contamination that has brought a resurgence of cholera and has compromised clean drinking water and sanitation for more than one billion people worldwide, food scarcity and undernutrition from droughts and desertification, pandemics of vector-borne diseases, and increasingly frequent and severe natural hazards such as flooding, hurricanes, and earthquakes. Centralized, well-organized emergency preparedness planning is needed at the national, regional, and municipal levels to enable safe and efficient evacuations, and to minimize injuries and fatalities. In addition, effective planning to address the public health impacts of climate change is contingent on poverty reduction, and adequate access to education and healthcare for all. This chapter addresses the major public health impacts of global warming and the use of technologies in adapting to them.


Author(s):  
Debra N. Weiss-Randall

Many serious adverse public health impacts of climate change are already being felt around the globe, including record-breaking heat waves, severe air pollution, widespread water contamination that has brought a resurgence of cholera and has compromised clean drinking water and sanitation for more than one billion people worldwide, food scarcity and undernutrition from droughts and desertification, pandemics of vector-borne diseases, and increasingly frequent and severe natural hazards such as flooding, hurricanes, and earthquakes. Centralized, well-organized emergency preparedness planning is needed at the national, regional, and municipal levels to enable safe and efficient evacuations, and to minimize injuries and fatalities. In addition, effective planning to address the public health impacts of climate change is contingent on poverty reduction, and adequate access to education and healthcare for all. This chapter addresses the major public health impacts of global warming and the use of technologies in adapting to them.


Sign in / Sign up

Export Citation Format

Share Document