scholarly journals Challenging Recommendation Engines Evaluation Metrics and Mitigating Bias Problem of Information Cascades and Confirmation Biases

Author(s):  
Guillaume Blot ◽  
Francis Rousseaux ◽  
Pierre Saurel
Author(s):  
Rumi Ghosh ◽  
Bernardo A. Huberman
Keyword(s):  

Author(s):  
Ilai Bistritz ◽  
Nasimeh Heydaribeni ◽  
Achilleas Anastasopoulos

2020 ◽  
Author(s):  
Abdulrahman Takiddin ◽  
Jens Schneider ◽  
Yin Yang ◽  
Alaa Abd-Alrazaq ◽  
Mowafa Househ

BACKGROUND Skin cancer is the most common cancer type affecting humans. Traditional skin cancer diagnosis methods are costly, require a professional physician, and take time. Hence, to aid in diagnosing skin cancer, Artificial Intelligence (AI) tools are being used, including shallow and deep machine learning-based techniques that are trained to detect and classify skin cancer using computer algorithms and deep neural networks. OBJECTIVE The aim of this study is to identify and group the different types of AI-based technologies used to detect and classify skin cancer. The study also examines the reliability of the selected papers by studying the correlation between the dataset size and number of diagnostic classes with the performance metrics used to evaluate the models. METHODS We conducted a systematic search for articles using IEEE Xplore, ACM DL, and Ovid MEDLINE databases following the PRISMA Extension for Scoping Reviews (PRISMA-ScR) guidelines. The study included in this scoping review had to fulfill several selection criteria; to be specifically about skin cancer, detecting or classifying skin cancer, and using AI technologies. Study selection and data extraction were conducted by two reviewers independently. Extracted data were synthesized narratively, where studies were grouped based on the diagnostic AI techniques and their evaluation metrics. RESULTS We retrieved 906 papers from the 3 databases, but 53 studies were eligible for this review. While shallow techniques were used in 14 studies, deep techniques were utilized in 39 studies. The studies used accuracy (n=43/53), the area under receiver operating characteristic curve (n=5/53), sensitivity (n=3/53), and F1-score (n=2/53) to assess the proposed models. Studies that use smaller datasets and fewer diagnostic classes tend to have higher reported accuracy scores. CONCLUSIONS The adaptation of AI in the medical field facilitates the diagnosis process of skin cancer. However, the reliability of most AI tools is questionable since small datasets or low numbers of diagnostic classes are used. In addition, a direct comparison between methods is hindered by a varied use of different evaluation metrics and image types.


2021 ◽  
Vol 54 (2) ◽  
pp. 1-36
Author(s):  
Fan Zhou ◽  
Xovee Xu ◽  
Goce Trajcevski ◽  
Kunpeng Zhang

The deluge of digital information in our daily life—from user-generated content, such as microblogs and scientific papers, to online business, such as viral marketing and advertising—offers unprecedented opportunities to explore and exploit the trajectories and structures of the evolution of information cascades. Abundant research efforts, both academic and industrial, have aimed to reach a better understanding of the mechanisms driving the spread of information and quantifying the outcome of information diffusion. This article presents a comprehensive review and categorization of information popularity prediction methods, from feature engineering and stochastic processes , through graph representation , to deep learning-based approaches . Specifically, we first formally define different types of information cascades and summarize the perspectives of existing studies. We then present a taxonomy that categorizes existing works into the aforementioned three main groups as well as the main subclasses in each group, and we systematically review cutting-edge research work. Finally, we summarize the pros and cons of existing research efforts and outline the open challenges and opportunities in this field.


Sign in / Sign up

Export Citation Format

Share Document