scholarly journals Towards Automatic Grammatical Evolution for Real-world Symbolic Regression

2021 ◽  
Author(s):  
Muhammad Ali ◽  
Meghana Kshirsagar ◽  
Enrique Naredo ◽  
Conor Ryan
2020 ◽  
pp. 1-27 ◽  
Author(s):  
M. Virgolin ◽  
T. Alderliesten ◽  
C. Witteveen ◽  
P. A. N. Bosman

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) is a model-based EA framework that has been shown to perform well in several domains, including Genetic Programming (GP). Differently from traditional EAs where variation acts blindly, GOMEA learns a model of interdependencies within the genotype, that is, the linkage, to estimate what patterns to propagate. In this article, we study the role of Linkage Learning (LL) performed by GOMEA in Symbolic Regression (SR). We show that the non-uniformity in the distribution of the genotype in GP populations negatively biases LL, and propose a method to correct for this. We also propose approaches to improve LL when ephemeral random constants are used. Furthermore, we adapt a scheme of interleaving runs to alleviate the burden of tuning the population size, a crucial parameter for LL, to SR. We run experiments on 10 real-world datasets, enforcing a strict limitation on solution size, to enable interpretability. We find that the new LL method outperforms the standard one, and that GOMEA outperforms both traditional and semantic GP. We also find that the small solutions evolved by GOMEA are competitive with tuned decision trees, making GOMEA a promising new approach to SR.


Author(s):  
Sean Stijven ◽  
Ekaterina Vladislavleva ◽  
Arthur Kordon ◽  
Lander Willem ◽  
Mark E. Kotanchek

2021 ◽  
Author(s):  
Ahmad T. Anaqreh ◽  
Boglárka G.-Tóth ◽  
Tamás Vinkó

Graph properties are certain attributes that could make the structure of the graph understandable. Occasionally, standard methods cannot work properly for calculating exact values of graph properties due to their huge computational complexity, especially for real-world graphs. In contrast, heuristics and metaheuristics are alternatives proved their ability to provide sufficient solutions in a reasonable time. Although in some cases, even heuristics are not efficient enough, where they need some not easily obtainable global information of the graph. The problem thus should be dealt in completely different way by trying to find features that related to the property and based on these data build a formula which can approximate the graph property. In this work, symbolic regression with an evolutionary algorithm called Cartesian Genetic Programming has been used to derive formulas capable to approximate the graph geodetic number which measures the minimal-cardinality set of vertices, such that all shortest paths between its elements cover every vertex of the graph. Finding the exact value of the geodetic number is known to be NP-hard for general graphs. The obtained formulas are tested on random and real-world graphs. It is demonstrated how various graph properties as training data can lead to diverse formulas with different accuracy. It is also investigated which training data are really related to each property.


2020 ◽  
Vol 24 (15) ◽  
pp. 11283-11295
Author(s):  
Gabriel Kronberger ◽  
J. Manuel Colmenar ◽  
Stephan M. Winkler ◽  
J. Ignacio Hidalgo

Sign in / Sign up

Export Citation Format

Share Document