scholarly journals Comparison of the Diagnostic Performance of Two Real-Time PCR Systems for the Detection of Mycobacterium tuberculosis in Clinical Samples

2015 ◽  
Vol 43 (4) ◽  
pp. 130-137
Author(s):  
Olkar ABDULMAJED ◽  
A. Nedret KOC ◽  
Aslihan GULTEKIN ◽  
M. Altay ATALAY



2007 ◽  
Vol 29 ◽  
pp. S101-S102
Author(s):  
W. Sougakoff ◽  
G. Millot ◽  
C. Truffot-Pernot ◽  
N. Veziris ◽  
F. Brossier ◽  
...  


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244753
Author(s):  
Jeeyong Kim ◽  
Borae G. Park ◽  
Da Hye Lim ◽  
Woong Sik Jang ◽  
Jeonghun Nam ◽  
...  

Introduction The rapid and accurate diagnosis of tuberculosis (TB) is important to reduce morbidity and mortality rates and risk of transmission. Therefore, molecular detection methods such as a real-time PCR–based assay for Mycobacterium tuberculosis (MTB) have been commonly used for diagnosis of TB. Loop-mediated isothermal amplification (LAMP) assay was believed to be a simple, quick, and cost-effective isothermal nucleic acid amplification diagnostic test for infectious diseases. In this study, we designed an in-house multiplex LAMP assay for the differential detection of MTB and non-tuberculosis mycobacterium (NTM), and evaluated the assay using clinical samples. Material and methods For the multiplex LAMP assay, two sets of specific primers were designed: the first one was specific for IS6110 genes of MTB, and the second one was universal for rpoB genes of mycobacterium species including NTM. MTB was confirmed with a positive reaction with both primer sets, and NTM was identified with a positive reaction by only the second primer set without a MTB-specific reaction. Total 333 clinical samples were analyzed to evaluate the multiplex LAMP assay. Clinical samples were composed of 195 positive samples (72 MTB and 123NTM) and 138 negative samples. All samples were confirmed positivity or negativity by real-time PCR for MTB and NTM. Analytical sensitivity and specificity were evaluated for the multiplex LAMP assay in comparison with acid fast bacilli staining and the culture method. Results Of 123 NTM samples, 121 were identified as NTM and 72/72 MTB were identified as MTB by the multiplex LAMP assay. False negative reactions were seen only in two NTM positive samples with co-infection of Candida spp. All 138 negative samples were identified as negative for MTB and NTM. Analytical sensitivity of the multiplex LAMP assay was 100% (72/72) for MTB, and 98.4% (121/123) for NTM. And the specificity of assay was 100% (138/138) for all. Conclusions Our newly designed multiplex LAMP assay for MTB and NTM showed relatively good sensitivity in comparison with previously published data to detect isolated MTB. This multiplex LAMP assay is expected to become a useful tool for detecting and differentiating MTB from NTM rapidly at an acceptable sensitivity.



Author(s):  
Haidar Khalid Mostafa ◽  
Mohsen Hashem Risan ◽  
Mohammed Al Faham ◽  
M.R. Tbena


2004 ◽  
Vol 48 (11) ◽  
pp. 4293-4300 ◽  
Author(s):  
Mercedes Marín ◽  
Darío García de Viedma ◽  
María Jesús Ruíz-Serrano ◽  
Emilio Bouza

ABSTRACT Rapid detection of resistance in Mycobacterium tuberculosis can optimize the efficacy of antituberculous therapy and control the transmission of resistant M. tuberculosis strains. Real-time PCR has minimized the time required to obtain the susceptibility pattern of M. tuberculosis strains, but little effort has been made to adapt this rapid technique to the direct detection of resistance from clinical samples. In this study, we adapted and evaluated a real-time PCR design for direct detection of resistance mutations in clinical respiratory samples. The real-time PCR was evaluated with (i) 11 clinical respiratory samples harboring bacilli resistant to isoniazid (INH) and/or rifampin (RIF), (ii) 10 culture-negative sputa spiked with a set of strains encoding 14 different resistance mutations in 10 independent codons, and (iii) 16 sputa harboring susceptible strains. The results obtained with this real-time PCR design completely agreed with DNA sequencing data. In all sputa harboring resistant M. tuberculosis strains, the mutation encoding resistance was successfully detected. No mutation was detected in any of the susceptible sputa. The test was applied only to smear-positive specimens and succeeded in detecting a bacterial load equivalent to 103 CFU/ml in sputum samples (10 acid-fast bacilli/line). The analytical specificity of this method was proved with a set of 14 different non-M. tuberculosis bacteria. This real-time PCR design is an adequate method for the specific and rapid detection of RIF and INH resistance in smear-positive clinical respiratory samples.



2016 ◽  
Vol 54 (6) ◽  
pp. 1644-1647 ◽  
Author(s):  
Talita T. Rocchetti ◽  
Suzane Silbert ◽  
Alicia Gostnell ◽  
Carly Kubasek ◽  
Raymond Widen

A multiplex real-time PCR was validated on the BD Max open system to detect differentMycobacterium tuberculosiscomplex,Mycobacterium aviumcomplex, andMycobacteriumspp. directly from clinical samples. The PCR results were compared to those with traditional cultures. The multiplex PCR assay was found to be a specific and sensitive method for the rapid detection of mycobacteria directly from clinical specimens.



2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Fernando Alcaide ◽  
Rocío Trastoy ◽  
Raquel Moure ◽  
Mónica González-Bardanca ◽  
Antón Ambroa ◽  
...  

ABSTRACT Tuberculosis (TB) remains a major health problem worldwide. Control of TB requires rapid, accurate diagnosis of active disease. However, extrapulmonary TB is very difficult to diagnose because the clinical specimens have very low bacterial loads. Several molecular methods involving direct detection of the Mycobacterium tuberculosis complex (MTBC) have emerged in recent years. Real-time PCR amplification simultaneously combines the amplification and detection of candidate sequences by using fluorescent probes (mainly TaqMan or Molecular Beacons) in automated systems. The multiplex real-time PCR-short assay is performed using locked nucleic acid (LNA) probes (length, 8 to 9 nucleotides) in combination with CodUNG to detect multiple pathogens in clinical samples. In this study, we evaluated the performance of this novel multiplex assay for detecting the MTBC in comparison with that of the conventional culture-based method. The multiplex real-time PCR-shortTUB assay targets two genes, whiB3 (redox-responsive transcriptional regulator) and pstS1 (phosphate-specific transporter), yielding limits of detection (LOD) of 10 copies and 100 copies, respectively, and amplification efficiencies of 92% and 99.7%, respectively. A total of 94 extrapulmonary samples and pulmonary samples with low mycobacterial loads (all smear negative; 75 MTBC culture positive) were analyzed using the test, yielding an overall sensitivity of 88% and a specificity of 95%. For pleural fluid and tissues/biopsy specimens, the sensitivity was 83% and 85%, respectively. In summary, this technique could be implemented in routine clinical microbiology testing to reduce the overall turnaround time for MTBC detection and may therefore be a useful tool for the diagnosis of extrapulmonary tuberculosis and diagnosis using pulmonary samples with low mycobacterial loads.



2011 ◽  
Vol 49 (10) ◽  
pp. 3458-3462 ◽  
Author(s):  
M. B. Miller ◽  
E. B. Popowitch ◽  
M. G. Backlund ◽  
E. P. C. Ager


Sign in / Sign up

Export Citation Format

Share Document