Effect of Finite Extensibility on the Viscoelastic Properties of a Styrene-Butadiene Rubber Vulcanizate in Simple Tensile Deformations up to Rupture

1970 ◽  
Vol 43 (4) ◽  
pp. 714-734
Author(s):  
T. L. Smith ◽  
R. A. Dickie

Abstract Stress-strain and rupture data were determined on an unfilled styrene-butadiene vulcanizate at temperatures from −45 to 35° C and at extension rates from 0.0096 to 9.6 min−1. The data were represented by four functions: (1) the well-known temperature function (shift factor) aT; (2) the constant-strain-rate modulus, F (t, T) reduced to temperature T0 and time t/aT, i.e., T0F (t/aT)/T (3) the time-dependent maximum extensibility λm (t/aT); and (4) a function Ω(χ) where χ=(λ−1)λm0/λm, in which λ is the extension ratio and λm0 is the maximum extensibility under equilibrium conditions. The constant-strain-rate modulus characterizes the stress-time response to a constant extension rate at small strains, within the range of linear response; λm is a material parameter needed to represent the response at large λ; and Ω(χ) represents the stress-strain curve of the material in a reference state of unit modulus and λm=λm0. The shift factor aT was found to be sensibly independent of extension. At all values of t/aT for which the maximum extensibility is time-independent, the relaxation rate was also found to be independent of λ. These observations indicate that the monomeric friction coefficient is strain-independent over the ranges of T and λ covered in the present study. It was found that λm0=8.6 and that the largest extension ratio at break (λb)max is 7.3. Thus, rupture always occurs before the network is fully extended.

1992 ◽  
Vol 65 (2) ◽  
pp. 475-487 ◽  
Author(s):  
P. L. Cho ◽  
G. R. Hamed

Abstract The green strengths of a gum SBR and two black-filled samples, at twenty-three volume percent filler, have been determined at various strain rates and temperatures. At higher temperatures, all samples exhibit yielding, followed by strain-softening. The gum exhibits this type of behavior down to −20°C, whereas, filled specimens undergo strain hardening at this temperature. Yield strength increases with decreasing temperature or increasing rate, indicating that it is largely controlled by chain mobility. Yield strengths at various temperatures may be shifted along the rate axis to form mastercurves. The dependence of yield stress on reduced rate is similar for the gum and the composition filled with the large-sized thermal black (N990). Stiffening is reasonably well accounted for by strain and strain-rate amplification, using the well-known Guth—Gold amplification factor. At low reduced rates, the extent of stiffening is substantially greater for samples filled with the much finer furnace black, N110. Unlike with the N990, SBR filled with N110 forms a coherent bound-rubber gel. This provides a strong resistance to deformation (beyond simple strain or strain-rate amplification) and results in high yield strength. At low temperatures, perhaps when the magnitude of chain—chain and chain—filler internal friction is comparable, the effect of filler size is greatly diminished.


2020 ◽  
Vol 93 (9) ◽  
pp. 289-292
Author(s):  
Yumi SHIMIZU ◽  
Shuma SATHO ◽  
Taro NAKAJIMA ◽  
Hiroaki KOUZAI ◽  
Kiminori SHIMIZU

Sign in / Sign up

Export Citation Format

Share Document