scholarly journals A biobjective capacitated vehicle routing problem using metaheuristic ILS and decomposition

2021 ◽  
Vol 12 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Luis Fernando Galindres-Guancha ◽  
Eliana Toro-Ocampo ◽  
Ramón Gallego-Rendón

Vehicle routing problems (VRPs) have usually been studied with a single objective function defined by the distances associated with the routing of vehicles. The central problem is to design a set of routes to meet the demands of customers at minimum cost. However, in real life, it is necessary to take into account other objective functions, such as social functions, which consider, for example, the drivers' workload balance. This has led to growth in both the formulation of multiobjective models and exact and approximate solution techniques. In this article, to verify the quality of the results, first, a mathematical model is proposed that takes into account both economic and work balance objectives simultaneously and is solved using an exact method based on the decomposition approach. This method is used to compare the accuracy of the proposed approximate method in test cases of medium mathematical complexity. Second, an approximate method based on the Iterated Local Search (ILS) metaheuristic and Decomposition (ILS/D) is proposed to solve the biobjective Capacitated VRP (bi-CVRP) using test cases of medium and high mathematical complexity. Finally, the nondominated sorting genetic algorithm (NSGA-II) approximate method is implemented to compare both medium- and high-complexity test cases with a benchmark. The obtained results show that ILS/D is a promising technique for solving VRPs with a multiobjective approach.

Author(s):  
Luca Accorsi ◽  
Daniele Vigo

In this paper, we propose a fast and scalable, yet effective, metaheuristic called FILO to solve large-scale instances of the Capacitated Vehicle Routing Problem. Our approach consists of a main iterative part, based on the Iterated Local Search paradigm, which employs a carefully designed combination of existing acceleration techniques, as well as novel strategies to keep the optimization localized, controlled, and tailored to the current instance and solution. A Simulated Annealing-based neighbor acceptance criterion is used to obtain a continuous diversification, to ensure the exploration of different regions of the search space. Results on extensively studied benchmark instances from the literature, supported by a thorough analysis of the algorithm’s main components, show the effectiveness of the proposed design choices, making FILO highly competitive with existing state-of-the-art algorithms, both in terms of computing time and solution quality. Finally, guidelines for possible efficient implementations, algorithm source code, and a library of reusable components are open-sourced to allow reproduction of our results and promote further investigations.


1970 ◽  
Vol 24 (4) ◽  
pp. 343-351 ◽  
Author(s):  
Filip Taner ◽  
Ante Galić ◽  
Tonči Carić

This paper addresses the Vehicle Routing Problem with Time Windows (VRPTW) and shows that implementing algorithms for solving various instances of VRPs can significantly reduce transportation costs that occur during the delivery process. Two metaheuristic algorithms were developed for solving VRPTW: Simulated Annealing and Iterated Local Search. Both algorithms generate initial feasible solution using constructive heuristics and use operators and various strategies for an iterative improvement. The algorithms were tested on Solomon’s benchmark problems and real world vehicle routing problems with time windows. In total, 44 real world problems were optimized in the case study using described algorithms. Obtained results showed that the same distribution task can be accomplished with savings up to 40% in the total travelled distance and that manually constructed routes are very ineffective.


Author(s):  
Renan Santos Mendes ◽  
Dangelo Silva Miranda ◽  
Elizabeth Fialho Wanner ◽  
Joao F. M. Sarubbi ◽  
Flavio V. C. Martins

2019 ◽  
Vol 53 (4) ◽  
pp. 1043-1066 ◽  
Author(s):  
Pedro Munari ◽  
Alfredo Moreno ◽  
Jonathan De La Vega ◽  
Douglas Alem ◽  
Jacek Gondzio ◽  
...  

We address the robust vehicle routing problem with time windows (RVRPTW) under customer demand and travel time uncertainties. As presented thus far in the literature, robust counterparts of standard formulations have challenged general-purpose optimization solvers and specialized branch-and-cut methods. Hence, optimal solutions have been reported for small-scale instances only. Additionally, although the most successful methods for solving many variants of vehicle routing problems are based on the column generation technique, the RVRPTW has never been addressed by this type of method. In this paper, we introduce a novel robust counterpart model based on the well-known budgeted uncertainty set, which has advantageous features in comparison with other formulations and presents better overall performance when solved by commercial solvers. This model results from incorporating dynamic programming recursive equations into a standard deterministic formulation and does not require the classical dualization scheme typically used in robust optimization. In addition, we propose a branch-price-and-cut method based on a set partitioning formulation of the problem, which relies on a robust resource-constrained elementary shortest path problem to generate routes that are robust regarding both vehicle capacity and customer time windows. Computational experiments using Solomon’s instances show that the proposed approach is effective and able to obtain robust solutions within a reasonable running time. The results of an extensive Monte Carlo simulation indicate the relevance of obtaining robust routes for a more reliable decision-making process in real-life settings.


Sign in / Sign up

Export Citation Format

Share Document