scholarly journals Majorization problems and integral transforms for a Class of Univalent Functions with missing coefficients

2014 ◽  
Vol 33 (2) ◽  
pp. 217 ◽  
Author(s):  
Som P. Goyal ◽  
Rakesh Kumar ◽  
Teodor Bulboaca

In 2005, Ponnusamy and Sahoo have introduced a special subclass of univalent functions Un(\lambda) (n 2 N, > 0) and obtained some geometrical properties, including strongly starlikeness and convexity, for the functions of this subclass Un(). Moreover, they have studied some important properties of an integral transform connected with these subclasses. The aim of the present paper is to investigate another important concept of majorization for the functions belonging to the class Un(\lambda) (0 <\lambda=< 1). We shall also discuss a majorization problem for some special integral transforms.


2021 ◽  
Vol 21 (2) ◽  
pp. 429-436
Author(s):  
SEEMA KABRA ◽  
HARISH NAGAR

In this present work we derived integral transforms such as Euler transform, Laplace transform, and Whittaker transform of K4-function. The results are given in generalized Wright function. Some special cases of the main result are also presented here with new and interesting results. We further extended integral transforms derived here in terms of Gauss Hypergeometric function.



1984 ◽  
Vol 36 (5) ◽  
pp. 924-960 ◽  
Author(s):  
R. Wong ◽  
J. P. Mcclure

A large number of important integral transforms, such as Laplace, Fourier sine and cosine, Hankel, Stieltjes, and Riemann- Liouville fractional integral transforms, can be put in the form1.1where f(t) and the kernel, h(t), are locally integrable functions on (0,∞), and x is a positive parameter. Recently, two important techniques have been developed to give asymptotic expansions of I(x) as x → + ∞ or x → 0+. One method relies heavily on the theory of Mellin transforms [8] and the other is based on the use of distributions [24]. Here, of course, the integral I(x) is assumed to exist in some ordinary sense.If the above integral does not exist in any ordinary sense, then it may be regarded as an integral transform of a distribution (generalized function). There are mainly two approaches to extend the classical integral transforms to distributions.



Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 254 ◽  
Author(s):  
Yuri Luchko

In this survey article, some schemata for applications of the integral transforms of mathematical physics are presented. First, integral transforms of mathematical physics are defined by using the notions of the inverse transforms and generating operators. The convolutions and generating operators of the integral transforms of mathematical physics are closely connected with the integral, differential, and integro-differential equations that can be solved by means of the corresponding integral transforms. Another important technique for applications of the integral transforms is the Mikusinski-type operational calculi that are also discussed in the article. The general schemata for applications of the integral transforms of mathematical physics are illustrated on an example of the Laplace integral transform. Finally, the Mellin integral transform and its basic properties and applications are briefly discussed.



2004 ◽  
Vol 2004 (11) ◽  
pp. 579-598 ◽  
Author(s):  
Bong Jin Kim ◽  
Byoung Soo Kim ◽  
David Skoug

We establish the various relationships that exist among the integral transformℱα,βF, the convolution product(F∗G)α, and the first variationδFfor a class of functionals defined onK[0,T], the space of complex-valued continuous functions on[0,T]which vanish at zero.



1956 ◽  
Vol 10 (3) ◽  
pp. 125-128
Author(s):  
B. W. Conolly

Titchmarsh and others [4] havo studied integral transform pairs of tho typeshowing how such pairs may be generated as a consequence of the relation which holds between the Mellin transforms of the kernels.



2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Chi-Min Liu

A shear flow motivated by relatively moving half-planes is theoretically studied in this paper. Either the mass influx or the mass efflux is allowed on the boundary. This flow is called the extended Stokes' problems. Traditionally, exact solutions to the Stokes' problems can be readily obtained by directly applying the integral transforms to the momentum equation and the associated boundary and initial conditions. However, it fails to solve the extended Stokes' problems by using the integral-transform method only. The reason for this difficulty is that the inverse transform cannot be reduced to a simpler form. To this end, several crucial mathematical techniques have to be involved together with the integral transforms to acquire the exact solutions. Moreover, new dimensionless parameters are defined to describe the flow phenomena more clearly. On the basis of the exact solutions derived in this paper, it is found that the mass influx on the boundary hastens the development of the flow, and the mass efflux retards the energy transferred from the plate to the far-field fluid.



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.



Author(s):  
Renato M. Cotta ◽  
Joa˜o N. N. Quaresma ◽  
Leandro A. Sphaier ◽  
Carolina P. Naveira-Cotta

The present work summarizes the theory and describes the algorithm related to the construction of an open source mixed symbolic-numerical computational code named UNIT — Unified Integral Transforms, that provides a development platform for finding solutions of linear and nonlinear partial differential equations via integral transforms. The reported research was performed by making use of the symbolic computational system Mathematica v.7.0 and the hybrid numerical-analytical methodology Generalized Integral Transform Technique — GITT. The aim here is to illustrate the robust and precision controlled simulation of multidimensional nonlinear transient convection-diffusion problems, while providing a brief introduction of this open source code. Test cases are selected based on nonlinear multi-dimensional formulations of the Burgers equations, with the establishment of reference results for specific numerical values of the governing parameters. Special aspects and computational behaviors of the algorithm are then discussed, demonstrating the implemented possibilities within the present version of the UNIT code.



Filomat ◽  
2019 ◽  
Vol 33 (3) ◽  
pp. 869-880
Author(s):  
Seung Chang ◽  
Jae Choi ◽  
Hyun Chung

Main goal of this paper is to establish various basic formulas for the generalized integral transform involving the generalized convolution product. In order to establish these formulas, we use the translation operator which was introduced in [9]. It was not easy to establish basic formulas for the generalized integral transforms because the generalized Brownian motion process used in this paper has the nonzero mean function. In this paper, we can easily establish various basic formulas for the generalized integral transform involving the generalized convolution product via the translation operator.



2008 ◽  
Vol 39 (4) ◽  
pp. 325-334 ◽  
Author(s):  
R. Aghalary ◽  
A. Ebadian ◽  
S. Shams

Let $\mathcal{A}$ denote the class of normalized analytic functions in the unit disc $ U $ and $ P_{\gamma} (\alpha, \beta) $ consists of $ f \in \mathcal{A} $ so that$ \exists ~\eta \in \mathbb{R}, \quad \Re \bigg \{e^{i\eta} \bigg [(1-\gamma) \Big (\frac{f(z)}{z}\Big )^{\alpha}+ \gamma \frac{zf'(z)}{f(z)} \Big (\frac{f(z)}{z}\Big )^{\alpha} - \beta\bigg ]\bigg \} > 0. $ In the present paper we shall investigate the integral transform$ V_{\lambda, \alpha}(f)(z) = \bigg \{\int_{0}^{1} \lambda(t) \Big (\frac{f(tz)}{t}\Big )^{\alpha}dt\bigg \}^{\frac{1}{\alpha}}, $ where $ \lambda $ is a non-negative real valued function normalized by $ \int_{0}^{1}\lambda(t) dt=1 $. Actually we aim to find conditions on the parameters $ \alpha, \beta, \gamma, \beta_{1}, \gamma_{1} $ such that $ V_{\lambda, \alpha}(f) $ maps $ P_{\gamma}(\alpha, \beta) $ into $ P_{\gamma_{1}}(\alpha, \beta_{1}) $. As special cases, we study various choices of $ \lambda(t) $, related to classical integral transforms.



Sign in / Sign up

Export Citation Format

Share Document