scholarly journals Finite Population Distribution Function Estimation Using Auxiliary Information Under Simple Random Sampling

2021 ◽  
Vol 3 (1) ◽  
pp. 29-38
Author(s):  
Sohaib Ahmad ◽  
Sardar Hussain ◽  
Sohail Ahmad

In this paper, a new estimator for estimating the finite population distribution function(DF) are propose using supplementary information on the DF of the auxiliary variable under simple random sampling. A comparative study is conducted to compare, theoretically and numerically, the adapted distribution function estimators of Cochran (1940), Murthy (1967), Bahl and Tuteja (1991), Rao (1991), Singh et al. (2009) and Grover and Kaur (2014) with the proposed estimators. It is found that the proposed estimators always perform better than the adapted estimators in terms of MSE and percentage relative efficiency.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Saddam Hussain ◽  
Mi Zichuan ◽  
Sardar Hussain ◽  
Anum Iftikhar ◽  
Muhammad Asif ◽  
...  

In this paper, we proposed two new families of estimators using the supplementary information on the auxiliary variable and exponential function for the population distribution functions in case of nonresponse under simple random sampling. The estimations are done in two nonresponse scenarios. These are nonresponse on study variable and nonresponse on both study and auxiliary variables. As we have highlighted above that two new families of estimators are proposed, in the first family, the mean was used, while in the second family, ranks were used as auxiliary variables. Expression of biases and mean squared error of the proposed and existing estimators are obtained up to the first order of approximation. The performances of the proposed and existing estimators are compared theoretically. On these theoretical comparisons, we demonstrate that the proposed families of estimators are better in performance than the existing estimators available in the literature, under the obtained conditions. Furthermore, these theoretical findings are braced numerically by an empirical study offering the proposed relative efficiencies of the proposed families of estimators.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243584
Author(s):  
Sardar Hussain ◽  
Sohaib Ahmad ◽  
Sohail Akhtar ◽  
Amara Javed ◽  
Uzma Yasmeen

In this paper, we propose two new families of estimators for estimating the finite population distribution function in the presence of non-response under simple random sampling. The proposed estimators require information on the sample distribution functions of the study and auxiliary variables, and additional information on either sample mean or ranks of the auxiliary variable. We considered two situations of non-response (i) non-response on both study and auxiliary variables, (ii) non-response occurs only on the study variable. The performance of the proposed estimators are compared with the existing estimators available in the literature, both theoretically and numerically. It is also observed that proposed estimators are more precise than the adapted distribution function estimators in terms of the percentage relative efficiency.


2021 ◽  
Vol 7 (3) ◽  
pp. 4592-4613
Author(s):  
Sohaib Ahmad ◽  
◽  
Sardar Hussain ◽  
Muhammad Aamir ◽  
Faridoon Khan ◽  
...  

<abstract><p>This paper addresses the issue of estimating the population mean for non-response using simple random sampling. A new family of estimators is proposed for estimating the population mean with auxiliary information on the sample mean and the rank of the auxiliary variable. Bias and mean square errors of existing and proposed estimators are obtained using the first order of measurement. Theoretical comparisons are made of the performance of the proposed and existing estimators. We show that the proposed family of estimators is more efficient than existing estimators in the literature under the given constraints using these theoretical comparisons.</p></abstract>


2018 ◽  
Vol 70 (1) ◽  
pp. 17-32
Author(s):  
Sumanta Adhya

Estimating finite population distribution function (FPDF) emerges as an important problem to the survey statisticians since the pioneering work of Chambers and Dunstan [1] . It unifies estimation of standard finite population parameters, namely, mean and quantiles. Regarding this, estimating variance of FPDF estimator is an important task for accessing the quality of the estimtor and drawing inferences (e.g., confidence interval estimation) on finite population parameters. Due to non-linearity of FPDF estimator, resampling-based methods are developed earlier for parametric or non-parametric Chambers–Dunstan estimator. Here, we attempt the problem of estimating variance of P-splines-based semiparametric model-based Chambers–Dunstan type estimator of the FPDF. The proposed variance estimator involes bootstrapping. Here, the bootstrap procedure is non-trivial since it does not imitate the full mechanism of two-stage sample generating procedure from an infinite hypothetical population (superpopulation). We have established the weak consistency of the proposed resampling-based variance estimator for specific sampling designs, e.g., simple random sampling. Also, the satisfactory empirical performance of the poposed estimator has been shown through simulation studies and a real life example.


2005 ◽  
Vol 10 (4) ◽  
pp. 333-342
Author(s):  
V. Chadyšas ◽  
D. Krapavickaitė

Estimator of finite population parameter – ratio of totals of two variables – is investigated by modelling in the case of simple random sampling. Traditional estimator of the ratio is compared with the calibrated estimator of the ratio introduced by Plikusas [1]. The Taylor series expansion of the estimators are used for the expressions of approximate biases and approximate variances [2]. Some estimator of bias is introduced in this paper. Using data of artificial population the accuracy of two estimators of the ratio is compared by modelling. Dependence of the estimates of mean square error of the estimators of the ratio on the correlation coefficient of variables which are used in the numerator and denominator, is also shown in the modelling.


2000 ◽  
Vol 87 (2) ◽  
pp. 199-219 ◽  
Author(s):  
Jacobo de Uña-Álvarez ◽  
Wenceslao González-Manteiga ◽  
Carmen Cadarso-Suárez

Sign in / Sign up

Export Citation Format

Share Document