parameter ratio
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Syazwani Mohd Zokri ◽  
Nur Syamilah Arifin ◽  
Abdul Rahman Mohd Kasim ◽  
Norhaslinda Zullpakkal ◽  
Mohd Zuki Salleh

Convectively heated Jeffrey nanofluid flow in the presence of magnetic field and thermal radiation is investigated from a moving plate. Parameter of Brownian motion from Boungiorno model is the imperative mechanism that contributes to the heat transfer enhancement. Governing equations, consisting of the continuity, momentum, energy and nanoparticle concentrations equations are transformed into dimensionless form by means of the appropriate similarity transformation variables. Numerical results via Runge-Kutta Fehlberg Fourth-Fifth order (RKF45) method are specifically acquired on the impact of physical parameters such as Brownian motion, magnetic parameter, ratio of relaxation to retardation and radiation parameters over the temperature and nanoparticles concentration profiles. Comparison of the present results with existing published studies has validated the accuracy of the numerical solutions. Graphical representation of different magnetic parameters has caused the increment in both temperature and nanoparticles concentration profiles. On the other hand, enhancement of Brownian motion has intensified the temperature but declined the nanoparticles concentration.


Author(s):  
Andreas Eich ◽  
Andrzej Grzechnik ◽  
Carsten Paulmann ◽  
Thomas Müller ◽  
Yixi Su ◽  
...  

The crystal structure of CrAs was investigated using synchrotron X-ray single-crystal diffraction for separate dependences on temperature (30–400 K) and on pressure (0–9.46 GPa). The isosymmetrical magnetostructural phase transition at T N = 267 K can induce a change in the microstructure by twinning due to a crossing of the orthohexagonal setting of the unit-cell parameter ratio c/b. Within the crystal structure, one particular Cr–Cr distance exhibits anomalous behavior in that it is nearly unaffected by temperature and pressure in the paramagnetic phase, which is stable above 267 K and at high pressures. The distinction of this shortest Cr–Cr distance might be of importance for the superconducting properties of CrAs.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 244
Author(s):  
Hyunjo Jeong ◽  
Sungjong Cho ◽  
Shuzeng Zhang ◽  
Xiongbing Li

Nonlinear ultrasound is often employed to assess microdamage or nonlinear elastic properties of a material, and the nonlinear parameter is commonly used to quantify damage sate and material properties. Among the various factors that influence the measurement of nonlinear parameters, maintaining a constant contact pressure between the receiver and specimen is important for repeatability of the measurement. The use of an air-coupled transducer may be considered to replace the contact receiver. In this paper, a method of measuring the relative and absolute nonlinear parameters of materials is described using an air-coupled transducer as a receiver. The diffraction and attenuation corrections are newly derived from an acoustic model for a two-layer medium and the nonlinear parameter formula with all corrections is defined. Then, we show that the ratio of the relative nonlinear parameter of the target sample to the reference sample is equal to that of the absolute nonlinear parameter, and this equivalence is confirmed by measurements on three systems of aluminum samples. The proposed method allows the absolute measurement of the nonlinear parameter ratio or the nonlinear parameter without calibration of the air-coupled receiver and removes restrictions on the selection of reference samples.


2021 ◽  
Vol 7 (2) ◽  
pp. 1615-1627
Author(s):  
Kehong Zheng ◽  
◽  
Fuzhang Wang ◽  
Muhammad Kamran ◽  
Rewayat Khan ◽  
...  

<abstract><p>This investigation aims to present the unsteady motion of second grade fluid in an oscillating duct induced by rectified sine pulses. Some of the most dominant means for solving problems in engineering, mathematics and physics are transform methods. The objective is to modify the domain of the present problem to a new domain which is easier for evaluation. Such modifications can be done by different ways, one such way is by using transforms. In present work Fourier sine transform and Laplace transform techniques are used. The solution thus obtained is in form of steady state, with combination of transient solution which fulfills all required initial and boundary conditions. The influence of various parameters of interest for both developing and retarding flows on the flow characteristics will also be sketched and discussed. Also, the problem is reduced to the flow model where side walls are absent by bringing the aspect ratio parameter (ratio of length to width) to zero.</p></abstract>


2020 ◽  
Vol 76 (12) ◽  
pp. 1159-1166
Author(s):  
Nigel W. Moriarty ◽  
Dorothee Liebschner ◽  
Dale E. Tronrud ◽  
Paul D. Adams

Crystallographic refinement of macromolecular structures relies on stereochemical restraints to mitigate the typically poor data-to-parameter ratio. For proteins, each amino acid has a unique set of geometry restraints which represent stereochemical information such as bond lengths, valence angles, torsion angles, dihedrals and planes. It has been shown that the geometry in refined structures can differ significantly from that present in libraries; for example, it was recently reported that the guanidinium moiety in arginine is not symmetric. In this work, the asymmetry of the N∊—Cζ—Nη1 and N∊—Cζ—Nη2 valence angles in the guanidinium moiety is confirmed. In addition, it was found that the Cδ atom can deviate significantly (more than 20°) from the guanidinium plane. This requires the relaxation of the planar restraint for the Cδ atom, as it otherwise causes the other atoms in the group to compensate by distorting the guanidinium core plane. A new set of restraints for the arginine side chain have therefore been formulated, and are available in the software package Phenix, that take into account the asymmetry of the group and the planar deviation of the Cδ atom. This is an example of the need to regularly revisit the geometric restraint libraries used in macromolecular refinement so that they reflect the best knowledge of the structural chemistry of their components available at the time.


2020 ◽  
Vol 120 (1-2) ◽  
pp. 103-121
Author(s):  
Franziska Baus ◽  
Axel Klar ◽  
Nicole Marheineke ◽  
Raimund Wegener

This paper deals with the relation of the dynamic elastic Cosserat rod model and the Kirchhoff beam equations. We show that the Kirchhoff beam without angular inertia is the asymptotic limit of the Cosserat rod, as the slenderness parameter (ratio between rod diameter and length) and the Mach number (ratio between rod velocity and typical speed of sound) approach zero, i.e., low-Mach-number–slenderness limit. The asymptotic framework is exact up to fourth order in the small parameter and reveals a mathematical structure that allows a uniform handling of the transition regime between the models. To investigate this regime numerically, we apply a scheme that is based on a Gauss–Legendre collocation in space and an α-method in time.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3584
Author(s):  
Huang-Chen Lin ◽  
Shyh-Hau Wang

The assessment of microvascular perfusion is essential for the diagnosis of a specific muscle disease. In comparison with the current available medical modalities, the contrast-enhanced ultrasound imaging is the simplest and fastest means for probing the tissue perfusion. Specifically, the perfusion parameters estimated from the ultrasound time-intensity curve (TIC) and statistics-based time–Nakagami parameter curve (TNC) approaches were found able to quantify the perfusion. However, due to insufficient tolerance on tissue clutters and subresolvable effects, these approaches remain short of reproducibility and robustness. Consequently, the window-modulated compounding (WMC) Nakagami parameter ratio imaging was proposed to alleviate these effects, by taking the ratio of WMC Nakagami parameters corresponding to the incidence of two different acoustic pressures from an employed transducer. The time–Nakagami parameter ratio curve (TNRC) approach was also developed to estimate perfusion parameters. Measurements for the assessment of muscle perfusion were performed from the flow phantom and animal subjects administrated with a bolus of ultrasound contrast agents. The TNRC approach demonstrated better sensitivity and tolerance of tissue clutters than those of TIC and TNC. The fusion image with the WMC Nakagami parameter ratio and B-mode images indicated that both the tissue structures and perfusion properties of ultrasound contrast agents may be better discerned.


Sign in / Sign up

Export Citation Format

Share Document