Structural Integrity through Aerodynamic Analysis and Structural Test for Small Wind Turbine Composite Blade

2012 ◽  
Vol 15 (2) ◽  
pp. 63-68 ◽  
Author(s):  
Yun-Jung Jang ◽  
Jin-Hwan Jeong ◽  
Jang-Ho Lee ◽  
Ki-Weon Kang
2011 ◽  
Vol 35 (11) ◽  
pp. 1407-1413 ◽  
Author(s):  
Hong-Kwan Kim ◽  
Tae-Seong Kim ◽  
Jang-Ho Lee ◽  
Byung-Young Moon ◽  
Ki-Weon Kang

2011 ◽  
Vol 66-68 ◽  
pp. 1199-1206
Author(s):  
Samir Ahmad ◽  
Izhar-ul-Haq

In recent years the wind turbine blade has been the subject of comprehensive study and research amongst all other components of the wind turbine. As our appetite for renewable energy from the wind turbine continues to increase, companies now focus on rotor blades which can go up to 80m in length. The blade material not only have to face large aerodynamic, inertial and fatigue loads but are now being designed to endure environmental effects such as Ultraviolet degradation of surface, accumulation of dust particles at sandy locations, ice accretion on blades in cold countries, insect collision on blades and moisture ingress. All this is considered to ensure that the blades complete its designated life span. Furthermore exponential increase in composite blade manufacturing is causing a substantial amount of unrecyclable material. All these issues raise challenges for wind blade material use, its capacity to solve above mentioned problems and also maintain its structural integrity. This paper takes on this challenge by optimizing from the properties, merits, demerits and cost of different possible competing materials. Then the material is checked for its structural integrity through Finite Element Analysis simulation using standards like IEC-61400-1.This paper also shows the future direction of research by elaborating the influence nanotechnology can have in the improvement of the wind blade.


2021 ◽  
Author(s):  
Sayem Zafar

The objective of the project was to design a small wind turbine blade which is aerodynamically efficient and easy to manufacture. Preliminary aerodynamic analysis concluded NACA 63-425 to be the most efficient airfoil. Blade geometry was determined after calculating baseline geometric values for low drag which was then used to calculate power. Blade's structural integrity was studied using ANSYS® software. Tested results yielded that a single layer of E-fibreglass-epoxy is good enough to sustain the prescribed loads. The results were used to calculate the total weight of the blade which was then used to determine the start-up speed. Overall the project was successful in designing a wind turbine blade that produced 450 [W] of electrical power at 4[m/s] wind speed with the start-up speed of around 2[m/d]. The project fulfilled its objective which was to design a more effective wind turbine blade with manufacturability in mind.


2021 ◽  
Author(s):  
Sayem Zafar

The objective of the project was to design a small wind turbine blade which is aerodynamically efficient and easy to manufacture. Preliminary aerodynamic analysis concluded NACA 63-425 to be the most efficient airfoil. Blade geometry was determined after calculating baseline geometric values for low drag which was then used to calculate power. Blade's structural integrity was studied using ANSYS® software. Tested results yielded that a single layer of E-fibreglass-epoxy is good enough to sustain the prescribed loads. The results were used to calculate the total weight of the blade which was then used to determine the start-up speed. Overall the project was successful in designing a wind turbine blade that produced 450 [W] of electrical power at 4[m/s] wind speed with the start-up speed of around 2[m/d]. The project fulfilled its objective which was to design a more effective wind turbine blade with manufacturability in mind.


Sign in / Sign up

Export Citation Format

Share Document