A Dual Fault Detection Algorithm Based on the Federated Kalman Filter to Enhance the Reliability of the Navigation System

2020 ◽  
Vol 26 (2) ◽  
pp. 136-143
Author(s):  
Eung Ju Kim ◽  
Seong Taek Kim ◽  
Yong Hun Kim ◽  
Min Jun Choi ◽  
Do Hoang Viet ◽  
...  
2013 ◽  
Vol 347-350 ◽  
pp. 1544-1548
Author(s):  
Zi Yu Li ◽  
Yan Liu ◽  
Ping Zhu ◽  
Cheng Ying

In multi-sensor integrated navigation systems, when sub-systems are non-linear and with Gaussian noise, the federated Kalman filter commonly used generates large error or even failure when estimating the global fusion state. This paper, taking JIDS/SINS/GPS integrated navigation system as example, proposes a federated particle filter technology to solve problems above. This technology, combining the particle filter with the federated Kalman filter, can be applied to non-linear non-Gaussian integrated system. It is proved effective in information fusion algorithm by simulated application, where the navigation information gets well fused.


2016 ◽  
Vol 69 (4) ◽  
pp. 905-919 ◽  
Author(s):  
Yixian Zhu ◽  
Xianghong Cheng ◽  
Lei Wang

For the integrated navigation system, the correctness and the rapidity of fault detection for each sensor subsystem affects the accuracy of navigation. In this paper, a novel fault detection method for navigation systems is proposed based on Gaussian Process Regression (GPR). A GPR model is first used to predict the innovation of a Kalman filter. To avoid local optimisation, particle swarm optimisation is adopted to find the optimal hyper-parameters for the GPR model. The Fault Detection Function (FDF), which has an obvious jump in value when a fault occurs, is composed of the predicted innovation, the actual innovation of the Kalman filter and their variance. The fault can be detected by comparing the FDF value with a predefined threshold. In order to verify its validity, the proposed method is used in a SINS/GPS/Odometer integrated navigation system. The comparison experiments confirm that the proposed method can detect a gradual fault more quickly compared with the residual chi-squared test. Thus the navigation system with the proposed method gives more accurate outputs and its reliability is greatly improved.


2013 ◽  
Vol 332 ◽  
pp. 104-110 ◽  
Author(s):  
Muhammad Ushaq ◽  
Fang Jian Cheng ◽  
Ali Jamshaid

The complementary characteristics of the Strapdown Inertial Navigation System (SINS) and external non-inertial navigation aids like Global Positioning System (GPS) and Celestial Navigation System (CNS) make the integrated navigation system an appealing and cost effective solution for various applications. SINS exhibits position errors owing to errors in initialization of the inertial measurement unit (IMU) and the inherent accelerometer biases and gyroscope drifts. SINS also suffer from diverging azimuth errors and an exponentially increasing vertical channel error. Pitch and roll errors also exhibit unbounded growth with time. To mitigate this behavior of SINS, periodic corrections are opted for through measurements from external non-inertial navigation aids. These corrections can be in the form of position fixing, velocity fixing and attitude fixing from external aids like GPS, GLONASS (Russian Satellite Navigation System), BEIDU(Chinese Satellite Navigation System) and Celestial Navigation Systems (CNS) etc. In this research work GPS and CNS are used as external aids for SINS and the navigation solutions of all three systems (SINS, GPS and CNS) are fused using Federated Kalman Filter (FKF). The FKF differs from the conventional Central Kalman Filter (CKF) because each measurement is processed in Local Filters (LFs), and the results are combined in a Master Filter (MF). FKF is a partitioned estimation method that uses a two stage data processing scheme, in which the outputs of sensor related LFs are subsequently combined by a large MF. Each LF is dedicated to a separate sensor subsystem, and uses data from the common reference such as SINS. The SINS acts as a cardinal system in the combination, and its data is also available as measurement input for the master filter. In this research work, information from the GPS and the CNS are dedicated to the corresponding LFs. Each LF provides its solutions to the master filter all information is fused together forming a global solution. Simulation for the proposed architecture has validated the effectiveness of the scheme, by showing the substantial precision improvement in the solutions of position, velocity and attitude as compared to the pure SINS or any other standalone system.


2013 ◽  
Vol 446-447 ◽  
pp. 1078-1085 ◽  
Author(s):  
Muhammad Ushaq ◽  
Fang Jian Cheng

Strapdown Inertial navigation (SINS) is a highly reliable navigation system for short term applications. SINS functions continuously, less hardware failures, renders high speed navigation solutions ranging from 50 Hz to 1000 Hz and exhibits low short-term errors. It provides efficient attitude, angular rate, acceleration, velocity and position solutions. But, the accuracy of SINS solution vitiates with time as the sensor (gyros & accelerometers) errors are integrated through the navigation equations. Average navigation grade SINS are capable of providing effective stand-alone navigation for shorter duration (few minutes) applications Stand-alone SINS capable of providing solutions for applications exceeding 10 minutes duration, are generally highly expensive ($0.1M to $2.0M). To cope with this limitation, a cost effective solution is the integrated navigation system wherein the unboundedly growing errors of SINS are contained with the help of external non-inertial navigation aids like GPS, Celestial Navigation System (CNS), Odometer, Doppler radars etc. The efficient methodology for integrated or multi-sensory navigation is the Federated Kalman Filter (FKF) scheme. In FKF architecture, a reference SINS solution is integrated independently with each of the aiding navigation systems in a bank of local Kalman filters. There are a number of different ways in which the local filter outputs may be combined to produce an integrated navigation solution. The no-reset, fusion-reset, zero-reset, and cascaded versions of federated integration have been used by different researcher and navigators over the years. All different schemes of FKF have certain pros and cons. Fusion-reset method although nearly optimal is less fault tolerant while no-resent scheme renders highly fault tolerant solutions but with sub-optimal solutions and compromised precision. To enhance the fault tolerance ability of fusion-reset scheme of FKF, additional parameters called weighting factors are introduced to tune the contribution of each local filter in the final data fusion. The presented scheme has been found nearly optimal and expressively fault tolerant.


Sign in / Sign up

Export Citation Format

Share Document