An Efficient and Fault-Tolerant Privacy-Preserving D2D Group Communication

2021 ◽  
Vol 22 (7) ◽  
pp. 1517-1530
Author(s):  
Hung-Yu Chien Hung-Yu Chien

Author(s):  
Chang Xu ◽  
Run Yin ◽  
Liehuang Zhu ◽  
Chuan Zhang ◽  
Can Zhang ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 58-69
Author(s):  
Jianhong Zhang ◽  
Qijia Zhang ◽  
Shenglong Ji ◽  
Wenle Bai

IEEE Micro ◽  
1996 ◽  
Vol 16 (2) ◽  
pp. 59-67 ◽  
Author(s):  
W. Jia ◽  
J. Kaiser ◽  
E. Nett

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Siliang Dong ◽  
Zhixin Zeng ◽  
Yining Liu

Electricity theft occurs from time to time in the smart grid, which can cause great losses to the power supplier, so it is necessary to prevent the occurrence of electricity theft. Using machine learning as an electricity theft detection tool can quickly lock participants suspected of electricity theft; however, directly publishing user data to the detector for machine learning-based detection may expose user privacy. In this paper, we propose a real-time fault-tolerant and privacy-preserving electricity theft detection (FPETD) scheme that combines n -source anonymity and a convolutional neural network (CNN). In our scheme, we designed a fault-tolerant raw data collection protocol to collect electricity data and cut off the correspondence between users and their data, thereby ensuring the fault tolerance and data privacy during the electricity theft detection process. Experiments have proven that our dimensionality reduction method makes our model have an accuracy rate of 92.86% for detecting electricity theft, which is much better than others.


Author(s):  
Sebastian Stammler ◽  
Tobias Kussel ◽  
Phillipp Schoppmann ◽  
Florian Stampe ◽  
Galina Tremper ◽  
...  

Abstract Motivation Record Linkage has versatile applications in real-world data analysis contexts, where several data sets need to be linked on the record level in the absence of any exact identifier connecting related records. An example are medical databases of patients, spread across institutions, that have to be linked on personally identifiable entries like name, date of birth or ZIP code. At the same time, privacy laws may prohibit the exchange of this personally identifiable information (PII) across institutional boundaries, ruling out the outsourcing of the record linkage task to a trusted third party. We propose to employ privacy-preserving record linkage (PPRL) techniques that prevent, to various degrees, the leakage of PII while still allowing for the linkage of related records. Results We develop a framework for fault-tolerant PPRL using secure multi-party computation with the medical record keeping software Mainzelliste as the data source. Our solution does not rely on any trusted third party and all PII is guaranteed to not leak under common cryptographic security assumptions. Benchmarks show the feasibility of our approach in realistic networking settings: linkage of a patient record against a database of 10.000 records can be done in 48s over a heavily delayed (100ms) network connection, or 3.9s with a low-latency connection. Availability and implementation The source code of the sMPC node is freely available on Github at https://github.com/medicalinformatics/SecureEpilinker subject to the AGPLv3 license. The source code of the modified Mainzelliste is available at https://github.com/medicalinformatics/MainzellisteSEL.


Sign in / Sign up

Export Citation Format

Share Document