scholarly journals Breakdown in short rod-plane air gaps under positive lightning impulse stress

Author(s):  
Hans Kristian Hygen Meyer ◽  
Frank Mauseth ◽  
Martine Husøy ◽  
Atle Pedersen

<p>Prediction of withstand voltages in air-insulated systems are made on the basis of empirical models that are not sufficiently accurate for complex geometries. Better understanding of the spatiotemporal development of electrical discharges is necessary to improve the present models. Discharges in lightning impulse stressed 20–100mm rod-plane gaps are examined using a highspeed camera, photo-multiplier tubes (PMTs) and a highbandwidth current measurement system. The images and measurements of gaps larger than 20mm show a fast initial streamer discharge with a current rise time of some tens of ns, followed by a dark period of a few μs and a propagation of a slower leader-type channel leading to breakdown. The breakdown mechanisms in the shortest gaps are faster and geometry dependent, probably occuring by heating of initial streamer channels. Different light filters used with the PMTs indicate that all parts of the leader-type discharge development emit light over a spectrum from UV to IR. The initial discharges emit low amounts of warm light and IR compared to the leader-type channel. Finally, it is suggested that empirical breakdown voltage prediction models should be interpreted in light of the leader-type breakdown mechanism.</p>

Author(s):  
Hans Kristian Hygen Meyer ◽  
Frank Mauseth ◽  
Martine Husøy ◽  
Atle Pedersen

<p>Prediction of withstand voltages in air-insulated systems are made on the basis of empirical models that are not sufficiently accurate for complex geometries. Better understanding of the spatiotemporal development of electrical discharges is necessary to improve the present models. Discharges in lightning impulse stressed 20–100 mm rod-plane gaps are examined using a highspeed camera, photo-multiplier tubes (PMTs) and a highbandwidth current measurement system. The images and measurements of gaps larger than 20mm show a fast initial streamer discharge with a current rise time of some tens of ns, followed by a dark period of a few μs and a propagation of a slower leader-type channel leading to breakdown. The breakdown mechanisms in the shortest gaps are faster and geometry dependent, probably occuring by heating of initial streamer channels. Different light filters used with the PMTs indicate that all parts of the leader-type discharge development emit light over a spectrum from UV to IR. The initial discharges emit low amounts of warm light and IR compared to the leader-type channel. Finally, it is suggested that empirical breakdown voltage prediction models should be interpreted in light of the leader-type breakdown mechanism.</p>


1995 ◽  
Vol 115 (2) ◽  
pp. 143-148
Author(s):  
Toshiyuki Sugimoto ◽  
Yoshio Higashiyama ◽  
Kazutoshi Asano

1976 ◽  
Vol 29 (2) ◽  
pp. 1 ◽  
Author(s):  
RL Dewar

The effect of an iron transformer core on the field of a current loop is examined for two models of the core: (1) An infinite straight rod of high permeability aligned along the axis of symmetry, for which asymptotic expressions for the effect of the core are obtained and compared with numerical results. (2) A rectangular toroidal iron casing surrounding the loop. The latter model is more realistic because a return path is provided for the flux. For this model, the effect of air gaps is considered, and rapidly convergent series are obtained and numerical results are given. The significance of these results for tokamak equilibrium is indicated.


1991 ◽  
Vol 6 (1) ◽  
pp. 421-428 ◽  
Author(s):  
A.R. Al-Arainy ◽  
N.H. Malik ◽  
M.I. Qureshi
Keyword(s):  
Air Gaps ◽  

Sign in / Sign up

Export Citation Format

Share Document