scholarly journals Bayesian Estimation of Shape Parameter of Pareto Income Distribution Using LINEX Loss Function

2007 ◽  
Vol 14 (1) ◽  
pp. 33-55
Author(s):  
Sharad Saxena ◽  
Housila P. Singh
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Afrah Al-Bossly

The main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape parameter of the Lomax distribution (LD). The weights are merged into the CLLF to generate a new loss function called the weighted compound LINEX loss function (WCLLF). Then, the WCLLF is used to estimate the LD shape parameter through Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF), CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. The Bayesian and expected Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE) and Bayesian and E-Bayesian estimators under different loss functions. The simulation results show that the Bayes estimator according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in estimating the shape parameters based on the least mean averaged squared error.


2015 ◽  
Vol 3 (2) ◽  
pp. 108 ◽  
Author(s):  
Hesham Reyad ◽  
Soha Othman Ahmed

<p>This paper seeks to focus on Bayesian and E-Bayesian estimation for the unknown shape parameter of the Gumbel type-II distribution based on type-II censored samples. These estimators are obtained under symmetric loss function [squared error loss (SELF))] and various asymmetric loss functions [LINEX loss function (LLF), Degroot loss function (DLF), Quadratic loss function (QLF) and minimum expected loss function (MELF)]. Comparisons between the E-Bayesian estimators with the associated Bayesian estimators are investigated through a simulation study.</p>


1994 ◽  
Vol 34 (9) ◽  
pp. 1519-1523 ◽  
Author(s):  
M. Pandey ◽  
V.P. Singh ◽  
C.P.L. Srivastava

2016 ◽  
Vol 4 (1) ◽  
pp. 10 ◽  
Author(s):  
Hesham Reyad ◽  
Soha Othman Ahmed

<p>This paper introduces the Bayesian and E-Bayesian estimation for the shape parameter of the Kumaraswamy distribution based on type-II censored schemes. These estimators are derived under symmetric loss function [squared error loss (SELF))] and three asymmetric loss functions [LINEX loss function (LLF), Degroot loss function (DLF) and Quadratic loss function (QLF)]. Monte Carlo simulation is performed to compare the E-Bayesian estimators with the associated Bayesian estimators in terms of Mean Square Error (MSE).</p>


Sign in / Sign up

Export Citation Format

Share Document