censored samples
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 74)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 6 (3 (114)) ◽  
pp. 18-35
Author(s):  
Boris Lanetskii ◽  
Vadym Lukianchuk ◽  
Igor Koval ◽  
Hennadii Khudov ◽  
Andrii Hordiienko ◽  
...  

To manage the operation of modern single-use products, it is necessary to evaluate their preservation indicators as uncontrolled, non-repairable, and maintenance-free objects. Data for assessing its parameters are considered as one-time censored samples with continuous monitoring, which does not correspond to the mode of storage of products during operation. Under the conditions of limited volumes of censored samples, it is problematic to identify the parametric model of persistence. To solve this problem, a non-parametric estimation-experimental method has been devised, which is a set of models for data generation, estimation of the function of the distribution of the preservation period and preservation indicators. The data generation model is represented by a scheme of operational tests and analytical relationships between the quantities of tested and failed articles. The model of estimating the distribution function describes the process of its construction on the generated data. Models for estimating preservation indicators are represented by ratios for their point and interval estimates, as functionals from the restored distribution function. Unlike the well-known ones, the developed method implements the assessment of indicators under the conditions of combined censorship. The method can be used to assess the preservation indicators of single-use articles with an error of at least 7 %. At the same time, their lower confidence limits are estimated at 0.9 with an error not worse than 14 % with a censorship degree of not more than 0.23. The restored distribution function agrees well (reliability 0.9, error 0.1) with the actual persistence of articles with censorship degrees of not more than 0.73, which is acceptable for solving the problems of managing their operation.


2021 ◽  
Vol 26 (4) ◽  
pp. 82
Author(s):  
Farrukh Jamal ◽  
Ali H. Abuzaid ◽  
Muhammad H. Tahir ◽  
Muhammad Arslan Nasir ◽  
Sadaf Khan ◽  
...  

In this article, Burr III distribution is proposed with a significantly improved functional form. This new modification has enhanced the flexibility of the classical distribution with the ability to model all shapes of hazard rate function including increasing, decreasing, bathtub, upside-down bathtub, and nearly constant. Some of its elementary properties, such as rth moments, sth incomplete moments, moment generating function, skewness, kurtosis, mode, ith order statistics, and stochastic ordering, are presented in a clear and concise manner. The well-established technique of maximum likelihood is employed to estimate model parameters. Middle-censoring is considered as a modern general scheme of censoring. The efficacy of the proposed model is asserted through three applications consisting of complete and censored samples.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1578
Author(s):  
Ahmed Elshahhat ◽  
Hassan M. Aljohani ◽  
Ahmed Z. Afify

In this article, we introduce a new three-parameter distribution called the extended inverse-Gompertz (EIGo) distribution. The implementation of three parameters provides a good reconstruction for some applications. The EIGo distribution can be seen as an extension of the inverted exponential, inverse Gompertz, and generalized inverted exponential distributions. Its failure rate function has an upside-down bathtub shape. Various statistical and reliability properties of the EIGo distribution are discussed. The model parameters are estimated by the maximum-likelihood and Bayesian methods under Type-II censored samples, where the parameters are explained using gamma priors. The performance of the proposed approaches is examined using simulation results. Finally, two real-life engineering data sets are analyzed to illustrate the applicability of the EIGo distribution, showing that it provides better fits than competing inverted models such as inverse-Gompertz, inverse-Weibull, inverse-gamma, generalized inverse-Weibull, exponentiated inverted-Weibull, generalized inverted half-logistic, inverted-Kumaraswamy, inverted Nadarajah–Haghighi, and alpha-power inverse-Weibull distributions.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2120
Author(s):  
Manal M. Yousef ◽  
Ehab M. Almetwally

It is highly common in many real-life settings for systems to fail to perform in their harsh operating environments. When systems reach their lower, upper, or both extreme operating conditions, they frequently fail to perform their intended duties, which receives little attention from researchers. The purpose of this article is to derive inference for multicomponent reliability where stress-strength variables follow unit Kumaraswamy distributions based on the progressive first failure. Therefore, this article deals with the problem of estimating the stress-strength function, R when X,Y, and Z come from three independent Kumaraswamy distributions. The classical methods namely maximum likelihood for point estimation and asymptotic, boot-p and boot-t methods are also discussed for interval estimation and Bayes methods are proposed based on progressive first-failure censored data. Lindly’s approximation form and MCMC technique are used to compute the Bayes estimate of R under symmetric and asymmetric loss functions. We derive standard Bayes estimators of reliability for multicomponent stress–strength Kumaraswamy distribution based on progressive first-failure censored samples by using balanced and unbalanced loss functions. Different confidence intervals are obtained. The performance of the different proposed estimators is evaluated and compared by Monte Carlo simulations and application examples of real data.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Ali Algarni ◽  
Abdullah M. Almarashi ◽  
I. Elbatal ◽  
Amal S. Hassan ◽  
Ehab M. Almetwally ◽  
...  

In this paper, we present a new family of continuous distributions known as the type I half logistic Burr X-G. The proposed family’s essential mathematical properties, such as quantile function (QuFu), moments (Mo), incomplete moments (InMo), mean deviation (MeD), Lorenz (Lo) and Bonferroni (Bo) curves, and entropy (En), are provided. Special models of the family are presented, including type I half logistic Burr X-Lomax, type I half logistic Burr X-Rayleigh, and type I half logistic Burr X-exponential. The maximum likelihood (MLL) and Bayesian techniques are utilized to produce parameter estimators for the recommended family using type II censored data. Monte Carlo simulation is used to evaluate the accuracy of estimates for one of the family’s special models. The COVID-19 real datasets from Italy, Canada, and Belgium are analysed to demonstrate the significance and flexibility of some new distributions from the family.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Shrahili ◽  
I. Elbatal ◽  
Waleed Almutiry ◽  
Mohammed Elgarhy

In this article, we introduce a new one-parameter model, which is named sine inverted exponential (SIE) distribution. The SIE distribution is a new extension of the inverse exponential (IE) distribution. The SIE distribution aims to provide the SIE model for data-fitting purposes. The SIE distribution is more flexible than the inverted exponential (IE) model, and it has many applications in physics, medicine, engineering, nanophysics, and nanoscience. The density function (PDFu) of SIE distribution can be unimodel shape and right skewed shape. The hazard rate function (HRFu) of SIE distribution can be J-shaped and increasing shaped. We investigated some fundamental statistical properties such as quantile function (QFu), moments (Mo), moment generating function (MGFu), incomplete moments (ICMo), conditional moments (CMo), and the SIE distribution parameters were estimated using the maximum likelihood (ML) method for estimation under censored samples (CS). Finally, the numerical results were investigated to evaluate the flexibility of the new model. The SIE distribution and the IE distribution are compared using two real datasets. The numerical results show the superiority of the SIE distribution.


Sign in / Sign up

Export Citation Format

Share Document