scholarly journals The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

2010 ◽  
Vol 5 (4) ◽  
pp. 530-537 ◽  
Author(s):  
Sung-Yul Kim ◽  
In-Su Bae ◽  
Jin-O Kim
2018 ◽  
Vol 10 (12) ◽  
pp. 4445 ◽  
Author(s):  
Lejun Ma ◽  
Huan Wang ◽  
Baohong Lu ◽  
Changjun Qi

In view of the low efficiency of the particle swarm algorithm under multiple constraints of reservoir optimal operation, this paper introduces a particle swarm algorithm based on strongly constrained space. In the process of particle optimization, the algorithm eliminates the infeasible region that violates the water balance in order to reduce the influence of the unfeasible region on the particle evolution. In order to verify the effectiveness of the algorithm, it is applied to the calculation of reservoir optimal operation. Finally, this method is compared with the calculation results of the dynamic programming (DP) and particle swarm optimization (PSO) algorithm. The results show that: (1) the average computational time of strongly constrained particle swarm optimization (SCPSO) can be thought of as the same as the PSO algorithm and lesser than the DP algorithm under similar optimal value; and (2) the SCPSO algorithm has good performance in terms of finding near-optimal solutions, computational efficiency, and stability of optimization results. SCPSO not only improves the efficiency of particle evolution, but also avoids excessive improvement and affects the computational efficiency of the algorithm, which provides a convenient way for particle swarm optimization in reservoir optimal operation.


Sign in / Sign up

Export Citation Format

Share Document