A study on IEC 61850 based Centralized 22.9㎸ Bus Protection considering Time Synchronization Errors

Author(s):  
Myeong-Hoon Song ◽  
Nam-Ho Lee ◽  
Soon-Ryul Nam
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 967 ◽  
Author(s):  
Myeong-Hoon Song ◽  
Sang-Hee Kang ◽  
Nam-Ho Lee ◽  
Soon-Ryul Nam

This paper proposes an IEC 61850-based centralized busbar differential protection scheme, in which data desynchronization between intelligent electronic devices (IEDs) leads to differential current errors. As the differential current errors could result in erroneous operation of the centralized busbar differential protection, data desynchronization should be compensated for. The main causes of data desynchronization are subdivided into measurement timing and time synchronization errors. In this paper, the first-order Lagrange interpolation polynomial is used to compensate for measurement timing errors and the voltage angle differences between IEDs are used to compensate for time synchronization errors. The centralized busbar differential protection is tested using a real-time digital simulator and IEC 61850-based IEDs, which are implemented with the MMS-EASE Lite library and Smart Grid Infrastructure Evaluation Module. The test results show that the data desynchronization compensation can significantly reduce differential current errors, and thus prevent erroneous operation of the IEC 61850-based centralized busbar differential protection.


2015 ◽  
Vol 799-800 ◽  
pp. 1311-1315
Author(s):  
G. Igarashi ◽  
J.C. Santos

Our aim is to show some impacts on the differential protection of power transformers when using Non-Conventional Instrument Transformers associated with the IEC 61850-9-2 process bus. Described herein are a model for simulating the samples in the process bus, a proposed algorithm for differential protection of power transformers adapted from conventional differential relays so that it works according to the IEC 61850-9-2 standard, and a response analysis of the protection algorithm with the loss of the time synchronization signal in the process bus. Suggestions on parameters to be followed for safer operation of the process bus in these circumstances are also offered.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5148
Author(s):  
Marco Todescato ◽  
Ruggero Carli ◽  
Luca Schenato ◽  
Grazia Barchi

State Estimation (SE) is one of the essential tasks to monitor and control the smart power grid. This paper presents a method to estimate the state variables combining the measurement of power demand at each bus with the data collected from a limited number of Phasor Measurement Units (PMUs). Although PMU data are usually assumed to be perfectly synchronized with the Coordinated Universal Time (UTC), this work explicitly considers the presence of time-synchronization errors due, for instance, to the actual performance of GPS receivers and the limited stability of the internal oscillator. The proposed algorithm is a recursive Kalman filter which not only estimates the state variables of the power system, but also the frequency deviations causing clock offsets which eventually affect the timestamps of the measures returned by different PMUs. The proposed solution was tested and compared with alternative approaches using both synthetic data applied to the IEEE 123 bus distribution feeder and real-field data collected from a small-size medium-voltage (MV) distribution system located inside the EPFL campus in Lausanne. Results show the validity of the proposed method in terms of state estimation accuracy. In particular, when some synchronization errors are present, the proposed algorithm can estimate and compensate for them.


Sign in / Sign up

Export Citation Format

Share Document