real time digital simulator
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 36)

H-INDEX

16
(FIVE YEARS 2)

Wind ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 17-36
Author(s):  
Lilantha Samaranayake ◽  
Carlos E. Ugalde-Loo ◽  
Oluwole D. Adeuyi ◽  
John Licari ◽  
Janaka B. Ekanayake

With the development of offshore wind generation, the interest in cross-country connections is also increasing, which requires models to study their complex static and dynamic behaviors. This paper presents the mathematical modeling of an offshore wind farm integrated into a cross-country HVDC network forming a multi-terminal high-voltage DC (MTDC) network. The voltage source converter models were added with the control of active power, reactive power, frequency, and DC link voltages at appropriate nodes in the MTDC, resembling a typical cross-country multi-terminal type of HVDC scenario. The mathematical model for the network together with the controllers were simulated in MATLABTM and experimentally verified using a real-time digital simulator hardware setup. The resulting static and dynamic responses from the hardware setup agreed well with those from simulations of the developed models.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8404
Author(s):  
Janailson Queiroz ◽  
Sarah Carvalho ◽  
Camila Barros ◽  
Luciano Barros ◽  
Daniel Barbosa

Real-Time Digital Simulation (RTDS) is a powerful tool in modeling and analyzing electrical and drive systems because it provides an efficient and accurate process. There are several hardware devices for this type of simulation; however, their high costs have led to the increasing use of more affordable and reconfigurable technologies. In this context, many logic blocks and storage elements make the Field Programmable Gate Array (FPGA) an ideal device to perform RTDS. This work proposes a technique to embed a real-time digital simulator in an FPGA through Hardware Description Language (HDL) since it provides liberty in the architecture choice and no dependency on commercial ready-made hardware–software packages. The approach proposed focuses on system design developing with expression tree graph, synthesizing and verifying, prioritizing the performance and design accuracy concerning area and power consumption. Thus, the result acquisition occurs at a time step considered in real-time. A simulation of a direct current (DC) motor speed control has been incorporated into this work as an example of application, which includes the embedding and simulation of the electric machine and its drive system. Performance tests have shown that the developed simulator is real-time and makes possible realistic analysis of the interaction between the plant and its control. In addition, an idea of the hardware requirement for real-time simulation is proposed based on the number of mathematical operations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Yin

With the enlarging scale of a doubly fed induction generator (DFIG) connected to a power system, the influence of short-circuit current on the system relay protection could not be ignored. Setting and configuring relay protection would be affected by an imprecise short-circuit current calculation. However, some existing studies only consider the condition that the input is the Crowbar and the rotor excitation is blocked. China's new network standard requires the output reactive support current of a DFIG and will change the characteristics of short-circuit current. To solve this problem, on the basis of analyzing the characters of the transient equivalent potential of a DFIG, the transient model of a DFIG with uninterrupted excitation is provided. Based on the characteristics of a non-abrupt change of flux linkage and the requirement of a new grid standard reactive support current, the short-circuit current calculation method of a DFIG with uninterrupted excitation is put forward. Based on the real-time digital simulator (RTDS), a digital-analog experimental platform containing the actual control unit of the DFIG converter is founded, the proposed short-circuit current root mean square (RMS) value calculating method is validated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elutunji Buraimoh ◽  
Innocent E. Davidson ◽  
Fernando Martinez-Rodrigo

In this study, a distributed secondary control is proposed alongside the conventional primary control to form a hierarchical control scheme for the Low Voltage Ride-Through (LVRT) control and applications in the inverter-based microgrid. The secondary control utilizes a fast Delayed Signal Cancelation (DSC) algorithm for the secondary control loop to control the reactive and active power reference by controlling the sequences generated. The microgrid consists of four Distributed Energy Resources (DER) sources interfaced to the grid through interfacing inverters coordinated by droop for effective power-sharing according to capacities. The droop also allows for grid supporting application for microgrid’s participation in frequency and voltage regulation in the main grid. The proposed decentralized fast DSC performance is evaluated with centralized secondary and traditional primary control using OPAL-RT Lab computation and MATLAB/SIMULINK graphical user interface for offline simulations and real-time digital simulator verification. This study presents and discusses the results.


2021 ◽  
Author(s):  
Wanderley Dias Xavier Filho ◽  
José Maria de Carvalho Filho ◽  
Frederico Oliveira Passos

No atual cenário de sistemas elétricos de potência, a Qualidade da Energia Elétrica (QEE) recebe cada vez mais notoriedade. Dentre os problemas de QEE, os Afundamentos Momentâneos de Tensão (AMTs) causam prejuízos financeiros consideráveis e localizar e mitigar as fontes de AMTs são um dos maiores desafios das concessionárias de energia elétrica. Nesse contexto, a tese proposta por (Passos, 2015) aborda um localizador o qual identifica de forma qualitativa (agente causador) a origem da fonte do AMT. Contudo, como sistemas elétricos de grande porte e malhados são mais complexos e com gradativo aumento de dispositivos não lineares, esse trabalho tem o encargo de avaliar tal localizador, através da modelagem de um sistema elétrico real de 92 barras e com a inserção de um compensador estático de reativos. Para tal estudo, a plataforma RTDS® (Real Time Digital Simulator) será requisitada para modelar o sistema.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 737
Author(s):  
Michał Kosmecki ◽  
Robert Rink ◽  
Anna Wakszyńska ◽  
Roberto Ciavarella ◽  
Marialaura Di Somma ◽  
...  

Along with the increasing share of non-synchronous power sources, the inertia of power systems is being reduced, which can give rise to frequency containment problems should an outage of a generator or a power infeed happen. Low system inertia is eventually unavoidable, thus power system operators need to be prepared for this condition. This paper addresses the problem of low inertia in the power system from two different perspectives. At a system level, it proposes an operation planning methodology, which utilises a combination of power flow and dynamic simulation for calculation of existing inertia and, if need be, synthetic inertia (SI) to fulfil the security criterion of adequate rate of change of frequency (RoCoF). On a device level, it introduces a new concept for active power controller, which can be applied virtually to any power source with sufficient response time to create synthetic inertia. The methodology is demonstrated for a 24 h planning period, for which it proves to be effective. The performance of SI controller activated in a battery energy storage system (BESS) is positively validated using a real-time digital simulator (RTDS). Both proposals can effectively contribute to facilitating the operation of low inertia power systems.


SIMULATION ◽  
2021 ◽  
pp. 003754972098686
Author(s):  
Jinchao Chen ◽  
Chenglie Du ◽  
Pengcheng Han ◽  
Xiaoyan Du

Simulation has been widely adopted as a support tool for the validation and experimentation of distributed systems. It allows different devices and applications to be evaluated and analyzed without requiring the actual presence of those machines. Although the simulation plays an important role in investigating and evaluating the behaviors of devices, it results in a serious simulator building problem as the distributed systems become more and more complicated and dynamically data driven. Most of the existing simulators are designed and developed to target a specific type of application, lacking the capabilities to be a configurable and standardized tool for researchers. To solve the adaptability and reusability problems of simulators, this paper proposes a new approach to design and implement a configurable real-time digital simulator for hardware devices that are connected via data buses in distributed systems. First, the proposed simulator uses a logic automaton to simulate the activities of a real device, and generates the incentive data for tested equipment according to the predefined XML-based files. Then with a virtual bus, the simulator can receive, handle, and send data in various network environments, improving the flexibility and adaptability of a simulator design. Experimental results show that the proposed simulator has a high real-time performance, and can meet the increasing requirements of modern simulations of distributed systems.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 547
Author(s):  
Junho Hong ◽  
Dmitry Ishchenko ◽  
Anil Kondabathini

Due to the high penetration of distributed energy resources (DER) and emerging DER interconnection and interoperability requirements, fast and standardized information exchange is essential for stable, resilient, and reliable operations in microgrids. This paper proposes fast fault detection, isolation, and restoration (F-FDIR) for microgrid application with the IEC 61850 Generic Object Oriented Substation Event (GOOSE) communication considering the communication/system failure. GOOSE provides a mechanism for lightweight low latency peer-to-peer data exchange between devices, which reduces the restoration time compared to conventional client-server communication paradigm. The proposed mitigation method for the communication/system failure can find an available restoration scenario and reduce the overall process time. Hardware-in-the-loop (HIL) testbed is designed and implemented with real time digital simulator, microgrid control system, and protection and control intelligent electric devices (IEDs) for the validation. The experimental results show that the proposed F-FDIR and IEC 61850 models can enhance the reliability and interoperability of the microgrid operation and enable self-healing microgrids.


Sign in / Sign up

Export Citation Format

Share Document