scholarly journals Embedding Heegaard Decompositions

10.53733/189 ◽  
2021 ◽  
Vol 52 ◽  
pp. 727-731
Author(s):  
Ian Agol ◽  
Mike Freedman

A smooth embedding of a closed $3$-manifold $M$ in $\mathbb{R}^4$ may generically be composed with projection to the fourth coordinate to determine a Morse function on $M$ and hence a Heegaard splitting $M=X\cup_\Sigma Y$.  However, starting with a Heegaard splitting, we find an obstruction coming from the geometry of the curve complex $C(\Sigma)$ to realizing a corresponding embedding $M\hookrightarrow \mathbb{R}^4$.

2019 ◽  
Vol 28 (09) ◽  
pp. 1950059
Author(s):  
Kevin Lamb ◽  
Patrick Weed

For a knot [Formula: see text], its exterior [Formula: see text] has a singular foliation by Seifert surfaces of [Formula: see text] derived from a circle-valued Morse function [Formula: see text]. When [Formula: see text] is self-indexing and has no critical points of index 0 or 3, the regular levels that separate the index-1 and index-2 critical points decompose [Formula: see text] into a pair of compression bodies. We call such a decomposition a circular Heegaard splitting of [Formula: see text]. We define the notion of circular distance (similar to Hempel distance) for this class of Heegaard splitting and show that it can be bounded under certain circumstances. Specifically, if the circular distance of a circular Heegaard splitting is too large: (1) [Formula: see text] cannot contain low-genus incompressible surfaces, and (2) a minimal-genus Seifert surface for [Formula: see text] is unique up to isotopy.


Open Physics ◽  
2009 ◽  
Vol 7 (1) ◽  
Author(s):  
Teik-Cheng Lim ◽  
Rajendra Udyavara

AbstractA set of relationships between the Morse and Varshni potential functions for describing covalent bondstretching energy has been developed by imposing equal force constant and equal energy integral. In view of the extensive adoption of Morse function in molecular force fields, this paper suggests two sets of parameter conversions from Varshni to Morse. The parameter conversion based on equal force constant is applicable for small change in bond length, while the parameter conversion based on equal energy integral is more applicable for significant bond-stretching. Plotted results reveal that the Varshni potential function is more suitable for describing hard bonds rather than soft bonds.


2006 ◽  
Vol 15 (02) ◽  
pp. 259-277 ◽  
Author(s):  
MICHAEL McLENDON

Given a Heegaard splitting of a closed 3-manifold, the skein modules of the two handlebodies are modules over the skein algebra of their common boundary surface. The zeroth Hochschild homology of the skein algebra of a surface with coefficients in the tensor product of the skein modules of two handlebodies is interpreted as the skein module of the 3-manifold obtained by gluing the two handlebodies together along this surface. A spectral sequence associated to the Hochschild complex is constructed and conditions are given for the existence of algebraic torsion in the completion of the skein module of this 3-manifold.


Author(s):  
Xianzhe Dai ◽  
Junrong Yan

Abstract Motivated by the Landau–Ginzburg model, we study the Witten deformation on a noncompact manifold with bounded geometry, together with some tameness condition on the growth of the Morse function f near infinity. We prove that the cohomology of the Witten deformation $d_{Tf}$ acting on the complex of smooth $L^2$ forms is isomorphic to the cohomology of the Thom–Smale complex of f as well as the relative cohomology of a certain pair $(M, U)$ for sufficiently large T. We establish an Agmon estimate for eigenforms of the Witten Laplacian which plays an essential role in identifying these cohomologies via Witten’s instanton complex, defined in terms of eigenspaces of the Witten Laplacian for small eigenvalues. As an application, we obtain the strong Morse inequalities in this setting.


2018 ◽  
Vol 27 (09) ◽  
pp. 1842003
Author(s):  
Liang Liang ◽  
Fengling Li ◽  
Fengchun Lei ◽  
Jie Wu

Suppose [Formula: see text] is a Heegaard splitting and [Formula: see text] is an essential separating disk in [Formula: see text] such that a component of [Formula: see text] is homeomorphic to [Formula: see text], [Formula: see text]. In this paper, we prove that if there is a locally complicated simplicial path in [Formula: see text] connecting [Formula: see text] to [Formula: see text], then the geodesic connecting [Formula: see text] to [Formula: see text] is unique. Moreover, we give a sufficient condition such that [Formula: see text] is keen and the geodesic between any pair of essential disks on the opposite sides has local uniqueness property.


2012 ◽  
Vol 02 (02) ◽  
pp. 119-123
Author(s):  
Ningthoujam Jiban Singh ◽  
Himadri Kumar Mukerjee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document