force constant
Recently Published Documents


TOTAL DOCUMENTS

536
(FIVE YEARS 22)

H-INDEX

43
(FIVE YEARS 2)

Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 319
Author(s):  
Jeonghwan Gil ◽  
Sesun You ◽  
Youngwoo Lee ◽  
Wonhee Kim

A cascade proportional integral control method with back-electro motive force compensation has been widely used for permanent magnet synchronous motors. In the permanent magnet synchronous motor control, it is important to accurately know the back-electro motive force constant for torque generation as well as back-electro motive force compensation. In this study, a real-time back-electro motive force constant estimation algorithm is developed to improve the velocity tracking control performance. The proposed method consists of a proportional integral controller and a back-electro motive force constant estimator. The proportional integral controller is designed to reduce the velocity tracking error. The back-electro motive force constant estimator is designed to estimate the back-electro motive force constant. It was verified that the estimated back-electro motive force constant converges to the actual back-electro motive force constant. The estimated back-electro motive force constant is applied to the cascade proportional integral controller. To verify the effectiveness of the proposed method, the performance of the proposed method is validated experimentally.


2021 ◽  
Vol 56 (6) ◽  
pp. 063005
Author(s):  
Unofre B Pili ◽  
Renante R Violanda
Keyword(s):  

2021 ◽  
Vol 69 ◽  
pp. 1-9
Author(s):  
Hamid A. Fayyadh

The density functional theory is applied for examining the electronic structure and spectroscopic properties for InP wurtzite molecules and nanocrystals. In this paper we present calculations of the energy gap, bond lengths, IR and Raman spectrum, reduced mass and force constant. The results of the presented work showing that the InP’s energy gap was fluctuated about to experimental bulk energy gap (1.49 eV). Results of spectroscopic properties including IR and Raman spectrum, reduced mass and force constant as a function of frequency were in accordance with the provided experimental results. In addition, the study of the Gibbs free energy proved the stability phase of InP wurtzoids against transition to InP diamondoids structure.


Author(s):  
Oussama Boutahir ◽  
Souhail Lakhlifi ◽  
Sidi Abdelmajid Ait Abdelkader ◽  
Mourad Boutahir ◽  
Abdelhai Rahmani ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 58
Author(s):  
Yinfei Liao ◽  
Xingwei Song ◽  
Maoyan An ◽  
Zhe Yang ◽  
Xiaodong Hao ◽  
...  

The wetting film evolution process is essential for flotation, especially in bubble–particle attachment. A mixed collector has been proved effective in promoting flotation. In this paper, the effect of a mixed collector (MC) composed by n-dodecane (D) and oleic acid (OA) on wetting film evolution was investigated using the extended Derjagin–Landau–Verwey–Overbeek (EDLVO) theory, the Stefan–Reynolds model, induction time, and zeta potential measurement. The hydrophobic force constant between bubble and coal treated by different collectors was analyzed. The results showed that MC was superior in reducing the induction time and increasing the zeta potential. When bubbles interacted with coal treated by MC, they had relatively low interaction energy, high critical film thickness, and high drainage rate. The order of hydrophobic force constant was no reagent < D < OA < MC. It indicated that the hydrophobic interaction between bubbles and coal particles treated by MC was the strongest because of the synergistic effect of D and OA.


2021 ◽  
Vol 09 (01) ◽  
pp. 11-20
Author(s):  
Mohammed Joghlaf ◽  
Yahya Ababou ◽  
Salaheddine Sayouri

Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


Sign in / Sign up

Export Citation Format

Share Document