Reducing the computation of Feynman integrals to integrals in the Wiener measure applying analyticcontinuation

2021 ◽  
Vol 13 (2) ◽  
pp. 130-134
Author(s):  
E.S. Kolpakov
2020 ◽  
Vol 41 (4) ◽  
pp. 709-713
Author(s):  
E. T. Shavgulidze ◽  
N. E. Shavgulidze

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Luke Corcoran ◽  
Florian Loebbert ◽  
Julian Miczajka ◽  
Matthias Staudacher

Abstract We extend the recently developed Yangian bootstrap for Feynman integrals to Minkowski space, focusing on the case of the one-loop box integral. The space of Yangian invariants is spanned by the Bloch-Wigner function and its discontinuities. Using only input from symmetries, we constrain the functional form of the box integral in all 64 kinematic regions up to twelve (out of a priori 256) undetermined constants. These need to be fixed by other means. We do this explicitly, employing two alternative methods. This results in a novel compact formula for the box integral valid in all kinematic regions of Minkowski space.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
D. Chicherin ◽  
V. Sotnikov

Abstract We complete the analytic calculation of the full set of two-loop Feynman integrals required for computation of massless five-particle scattering amplitudes. We employ the method of canonical differential equations to construct a minimal basis set of transcendental functions, pentagon functions, which is sufficient to express all planar and nonplanar massless five-point two-loop Feynman integrals in the whole physical phase space. We find analytic expressions for pentagon functions which are manifestly free of unphysical branch cuts. We present a public library for numerical evaluation of pentagon functions suitable for immediate phenomenological applications.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is $$ {D}_2\simeq {A}_1^2 $$ D 2 ≃ A 1 2 , we show that penta-box ladder has an alphabet of D3 ≃ A3 and provide strong evidence that the alphabet of seven-point double-penta ladders can be identified with a D4 cluster algebra. We relate the symbol letters to the u variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop d log representation, which allows us to predict higher-loop alphabet recursively; by applying it to certain eight-point and nine-point double-penta ladders, we also find D5 and D6 cluster functions respectively.


2014 ◽  
Vol 2014 (10) ◽  
Author(s):  
Samuel Abreu ◽  
Ruth Britto ◽  
Claude Duhr ◽  
Einan Gardi
Keyword(s):  

2001 ◽  
Vol 514 (3-4) ◽  
pp. 366-370 ◽  
Author(s):  
S.A. Larin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document