wilson loop
Recently Published Documents


TOTAL DOCUMENTS

387
(FIVE YEARS 62)

H-INDEX

35
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Han Li ◽  
M. Nadeem ◽  
M. A. Ali ◽  
H. Mutee ur Rehman

In this article, some algebraic properties of the Wilson loop have been investigated in a broad manner. These properties include identities, autotopisms, and implications. We use some equivalent conditions to study the behavior of holomorphism of this loop. Under the shadow of this holomorphism, we are able to observe coincident loops.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
M. Beccaria ◽  
S. Giombi ◽  
A. A. Tseytlin

Abstract Extending earlier work, we find the two-loop term in the beta-function for the scalar coupling ζ in a generalized Wilson loop operator of the $$ \mathcal{N} $$ N = 4 SYM theory, working in the planar weak-coupling expansion. The beta-function for ζ has fixed points at ζ = ±1 and ζ = 0, corresponding respectively to the supersymmetric Wilson-Maldacena loop and to the standard Wilson loop without scalar coupling. As a consequence of our result for the beta-function, we obtain a prediction for the two-loop term in the anomalous dimension of the scalar field inserted on the standard Wilson loop. We also find a subset of higher-loop contributions (with highest powers of ζ at each order in ‘t Hooft coupling λ) coming from the scalar ladder graphs determining the corresponding terms in the five-loop beta-function. We discuss the related structure of the circular Wilson loop expectation value commenting, in particular, on consistency with a 1d defect version of the F-theorem. We also compute (to two loops in the planar ladder model approximation) the two-point correlators of scalars inserted on the Wilson line.


2022 ◽  
Vol 258 ◽  
pp. 04009
Author(s):  
Viljami Leino ◽  
Nora Brambilla ◽  
Julian Mayer-Steudte ◽  
Antonio Vairo

We explore a novel approach to compute the force between a static quark-antiquark pair with the gradient flow algorithm on the lattice. The approach is based on inserting a chromoelectric field in a Wilson loop. The renormalization issues, associated with the finite size of the chromoelectric field on the lattice, can be solved with the use of gradient flow. We compare numerical results for the flowed static potential to our previous measurement of the same observable without a gradient flow.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Dmitry Antonov

This paper is devoted to the dual superconductor model of confinement in the 4D Yang–Mills theory. In the first part, we consider the latter theory compactified on a torus, and use the dual superconductor model in order to obtain the Polchinski–Strominger term in the string representation of a Wilson loop. For a certain realistic critical value of the product of circumferences of the compactification circles, which is expressed in terms of the gluon condensate and the vacuum correlation length, the coupling of the Polchinski–Strominger term turns out to be such that the string conformal anomaly cancels out, making the string representation fully quantum. In the second part, we use the analogy between the London limit of the dual superconductor and the low-energy limit of the 4D compact QED, to obtain the partition function of the dual superconductor model away from the London limit. There, we find a decrease of the vacuum correlation length, and derive the corresponding potential of monopole currents.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We propose that the symbol alphabet for classes of planar, dual-conformal-invariant Feynman integrals can be obtained as truncated cluster algebras purely from their kinematics, which correspond to boundaries of (compactifications of) G+(4, n)/T for the n-particle massless kinematics. For one-, two-, three-mass-easy hexagon kinematics with n = 7, 8, 9, we find finite cluster algebras D4, D5 and D6 respectively, in accordance with previous result on alphabets of these integrals. As the main example, we consider hexagon kinematics with two massive corners on opposite sides and find a truncated affine D4 cluster algebra whose polytopal realization is a co-dimension 4 boundary of that of G+(4, 8)/T with 39 facets; the normal vectors for 38 of them correspond to g-vectors and the remaining one gives a limit ray, which yields an alphabet of 38 rational letters and 5 algebraic ones with the unique four-mass-box square root. We construct the space of integrable symbols with this alphabet and physical first-entry conditions, whose dimension can be reduced using conditions from a truncated version of cluster adjacency. Already at weight 4, by imposing last-entry conditions inspired by the n = 8 double-pentagon integral, we are able to uniquely determine an integrable symbol that gives the algebraic part of the most generic double-pentagon integral. Finally, we locate in the space the n = 8 double-pentagon ladder integrals up to four loops using differential equations derived from Wilson-loop d log forms, and we find a remarkable pattern about the appearance of algebraic letters.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Masahide Manabe ◽  
Seiji Terashima ◽  
Yuji Terashima

Abstract We construct 3D $$ \mathcal{N} $$ N = 2 abelian gauge theories on $$ \mathbbm{S} $$ S 2 × $$ \mathbbm{S} $$ S 1 labeled by knot diagrams whose K-theoretic vortex partition functions, each of which is a building block of twisted indices, give the colored Jones polynomials of knots in $$ \mathbbm{S} $$ S 3. The colored Jones polynomials are obtained as the Wilson loop expectation values along knots in SU(2) Chern-Simons gauge theories on $$ \mathbbm{S} $$ S 3, and then our construction provides an explicit correspondence between 3D $$ \mathcal{N} $$ N = 2 abelian gauge theories and 3D SU(2) Chern-Simons gauge theories. We verify, in particular, the applicability of our constructions to a class of tangle diagrams of 2-bridge knots with certain specific twists.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We complete the program of [1] about perturbative approaches for $$ \mathcal{N} $$ N = 2 superconformal quiver theories in four dimensions. We consider several classes of observables in presence of Wilson loops, and we evaluate them with the help of supersymmetric localization. We compute Wilson loop vacuum expectation values, correlators of multiple coincident Wilson loops and one-point functions of chiral operators in presence of them acting as superconformal defects. We extend this analysis to the most general case considering chiral operators and multiple Wilson loops scattered in all the possible ways among the vector multiplets of the quiver. Finally, we identify twisted and untwisted observables which probe the orbifold of AdS5 × S5 with the aim of testing possible holographic perspectives of quiver theories in $$ \mathcal{N} $$ N = 2.


Author(s):  
Koichi Nagasaki

We find the probe D5-brane solution on the black hole space–time which is asymptomatically [Formula: see text]. These black holes have spherical, hyperbolic and toroidal structures. Depending on the gauge flux on the D5-brane, the D5-brane behaves differently. By adding the fundamental string, the potential energy of the interface solution and the Wilson loop is given in the case of nonzero gauge flux.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Simone Giombi ◽  
Bendeguz Offertaler

Abstract We study the half-BPS circular Wilson loop in $$ \mathcal{N} $$ N = 4 super Yang-Mills with orthogonal gauge group. By supersymmetric localization, its expectation value can be computed exactly from a matrix integral over the Lie algebra of SO(N). We focus on the large N limit and present some simple quantitative tests of the duality with type IIB string theory in AdS5× ℝℙ5. In particular, we show that the strong coupling limit of the expectation value of the Wilson loop in the spinor representation of the gauge group precisely matches the classical action of the dual string theory object, which is expected to be a D5-brane wrapping a ℝℙ4 subspace of ℝℙ5. We also briefly discuss the large N, large λ limits of the SO(N) Wilson loop in the symmetric/antisymmetric representations and their D3/D5-brane duals. Finally, we use the D5-brane description to extract the leading strong coupling behavior of the “bremsstrahlung function” associated to a spinor probe charge, or equivalently the normalization of the two-point function of the displacement operator on the spinor Wilson loop, and obtain agreement with the localization prediction.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Amit Sever ◽  
Alexander G. Tumanov ◽  
Matthias Wilhelm

Abstract Form factors in planar $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory admit a type of non-perturbative operator product expansion (OPE), as we have recently shown in [1]. This expansion is based on a decomposition of the dual periodic Wilson loop into elementary building blocks: the known pentagon transitions and a new object that we call form factor transition, which encodes the information about the local operator. In this paper, we compute the two-particle form factor transitions for the chiral part of the stress-tensor supermultiplet at Born level; they yield the leading contribution to the OPE. To achieve this, we explicitly construct the Gubser-Klebanov-Polyakov two-particle singlet states. The resulting transitions are then used to test the OPE against known perturbative data and to make higher-loop predictions.


Sign in / Sign up

Export Citation Format

Share Document