scholarly journals Linearization of Two Second-Order Ordinary Differential Equations via Fiber Preserving Point Transformations

2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Sakka Sookmee ◽  
Sergey V. Meleshko

The necessary form of a linearizable system of two second-order ordinary differential equations y1″=f1(x,y1,y2,y1′,y2′), y2″=f2(x,y1,y2,y1′,y2′) is obtained. Some other necessary conditions were also found. The main problem studied in the paper is to obtain criteria for a system to be equivalent to a linear system with constant coefficients under fiber preserving transformations. A linear system with constant coefficients is chosen because of its simplicity in finding the general solution. Examples demonstrating the procedure of using the linearization theorems are presented.

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Winter Sinkala

Transformations of differential equations to other equivalent equations play a central role in many routines for solving intricate equations. A class of differential equations that are particularly amenable to solution techniques based on such transformations is the class of linearisable second-order ordinary differential equations (ODEs). There are various characterisations of such ODEs. We exploit a particular characterisation and the expanded Lie group method to construct a generic solution for all linearisable second-order ODEs. The general solution of any given equation from this class is then easily obtainable from the generic solution through a point transformation constructed using only two suitably chosen symmetries of the equation. We illustrate the approach with three examples.


Author(s):  
V.K Chandrasekar ◽  
M Senthilvelan ◽  
M Lakshmanan

A method for finding general solutions of second-order nonlinear ordinary differential equations by extending the Prelle–Singer (PS) method is briefly discussed. We explore integrating factors, integrals of motion and the general solution associated with several dynamical systems discussed in the current literature by employing our modifications and extensions of the PS method. We also introduce a novel way of deriving linearizing transformations from the first integrals to linearize the second-order nonlinear ordinary differential equations to free particle equations. We illustrate the theory with several potentially important examples and show that our procedure is widely applicable.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sajid Ali ◽  
M. Safdar ◽  
Asghar Qadir

Complex Lie point transformations are used to linearize a class of systems of second order ordinary differential equations (ODEs) which have Lie algebras of maximum dimensiond, withd≤4. We identify such a class by employing complex structure on the manifold that defines the geometry of differential equations. Furthermore we provide a geometrical construction of the procedure adopted that provides an analogue inR3of the linearizability criteria inR2.


Author(s):  
V.K Chandrasekar ◽  
M Senthilvelan ◽  
M Lakshmanan

Coupled second-order nonlinear differential equations are of fundamental importance in dynamics. In this part of our study on the integrability and linearization of nonlinear ordinary differential equations (ODEs), we focus our attention on the method of deriving a general solution for two coupled second-order nonlinear ODEs through the extended Prelle–Singer procedure. We describe a procedure to obtain integrating factors and the required number of integrals of motion so that the general solution follows straightforwardly from these integrals. Our method tackles both isotropic and non-isotropic cases in a systematic way. In addition to the above-mentioned method, we introduce a new method of transforming coupled second-order nonlinear ODEs into uncoupled ones. We illustrate the theory with potentially important examples.


Sign in / Sign up

Export Citation Format

Share Document