scholarly journals Generalized derivations in prime and semiprime

2015 ◽  
Vol 34 (2) ◽  
pp. 29
Author(s):  
Shuliang Huang ◽  
Nadeem Ur Rehman

Let $R$ be a prime ring, $I$ a nonzero ideal of $R$ and $m, n$  fixed positive integers.  If $R$ admits a generalized derivation $F$ associated with a  nonzero derivation $d$ such that $(F([x,y])^{m}=[x,y]_{n}$ for  all $x,y\in I$, then $R$ is commutative. Moreover  we also examine the case when $R$ is a semiprime ring.

Author(s):  
Basudeb Dhara

LetRbe a ring with centerZandIa nonzero ideal ofR. An additive mappingF:R→Ris called a generalized derivation ofRif there exists a derivationd:R→Rsuch thatF(xy)=F(x)y+xd(y)for allx,y∈R. In the present paper, we prove that ifF([x,y])=±[x,y]for allx,y∈IorF(x∘y)=±(x∘y)for allx,y∈I, then the semiprime ringRmust contains a nonzero central ideal, providedd(I)≠0. In caseRis prime ring,Rmust be commutative, providedd≠0. The cases (i)F([x,y])±[x,y]∈Zand (ii)F(x∘y)±(x∘y)∈Zfor allx,y∈Iare also studied.


2020 ◽  
pp. 77-83
Author(s):  
Mohammad Shadab Khan ◽  
Mohd Arif Raza ◽  
Nadeemur Rehman

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d ( r ○ s)(r ○ s) + ( r ○ s) d ( r ○ s)n - d ( r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d ( r ○ s)( r ○ s) + ( r ○ s) d ( r ○ s)n - d (r ○ s))m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.


ISRN Algebra ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Basudeb Dhara ◽  
Atanu Pattanayak

Let be a semiprime ring, a nonzero ideal of , and , two epimorphisms of . An additive mapping is generalized -derivation on if there exists a -derivation such that holds for all . In this paper, it is shown that if , then contains a nonzero central ideal of , if one of the following holds: (i) ; (ii) ; (iii) ; (iv) ; (v) for all .


2013 ◽  
Vol 20 (03) ◽  
pp. 369-382 ◽  
Author(s):  
Xiaowei Xu ◽  
Jing Ma ◽  
Fengwen Niu

Let R be a prime ring with extended centroid C, maximal right ring of quotients U, a nonzero ideal I and a generalized derivation δ. Suppose δ(x)n =(ax)n for all x ∈ I, where a ∈ U and n is a fixed positive integer. Then δ(x)=λax for some λ ∈ C. We also prove two generalized versions by replacing I with a nonzero left ideal [Formula: see text] and a noncommutative Lie ideal L, respectively.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850055
Author(s):  
Basudeb Dhara ◽  
Krishna Gopal Pradhan ◽  
Shailesh Kumar Tiwari

Let [Formula: see text] be a noncommutative prime ring with its Utumi ring of quotients [Formula: see text], [Formula: see text] the extended centroid of [Formula: see text], [Formula: see text] a generalized derivation of [Formula: see text] and [Formula: see text] a nonzero ideal of [Formula: see text]. If [Formula: see text] satisfies any one of the following conditions: (i) [Formula: see text], [Formula: see text], [Formula: see text], (ii) [Formula: see text], where [Formula: see text] is a fixed integer, then one of the following holds: (1) there exists [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (2) [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (3) char [Formula: see text], [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and an outer derivation [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text].


2018 ◽  
Vol 17 (03) ◽  
pp. 1850046 ◽  
Author(s):  
Pao-Kuei Liau ◽  
Cheng-Kai Liu

Let [Formula: see text] be a prime ring with the extended centroid [Formula: see text], [Formula: see text] a noncommutative Lie ideal of [Formula: see text] and [Formula: see text] a nonzero [Formula: see text]-generalized derivation of [Formula: see text]. For [Formula: see text], let [Formula: see text]. We prove that if [Formula: see text] for all [Formula: see text], where [Formula: see text] are fixed positive integers, then there exists [Formula: see text] such that [Formula: see text] for all [Formula: see text] except when [Formula: see text], the [Formula: see text] matrix ring over a field [Formula: see text]. The analogous result for generalized skew derivations is also described. Our theorems naturally generalize the cases of derivations and skew derivations obtained by Lanski in [C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 75–80, Skew derivations and Engel conditions, Comm. Algebra 42 (2014), 139–152.]


Author(s):  
Deepak Kumar ◽  
Bharat Bhushan ◽  
Gurninder S. Sandhu

Let [Formula: see text] be a prime ring with involution ∗ of the second kind. An additive mapping [Formula: see text] is called generalized derivation if there exists a unique derivation [Formula: see text] such that [Formula: see text] for all [Formula: see text] In this paper, we investigate the structure of [Formula: see text] and describe the possible forms of generalized derivations of [Formula: see text] that satisfy specific ∗-differential identities. Precisely, we study the following situations: (i) [Formula: see text] (ii) [Formula: see text] (iii) [Formula: see text] (iv) [Formula: see text] for all [Formula: see text] Moreover, we construct some examples showing that the restrictions imposed in the hypotheses of our theorems are not redundant.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
V. De Filippis ◽  
G. Scudo ◽  
L. Sorrenti

Let R be a prime ring of characteristic different from 2, with extended centroid C, U its two-sided Utumi quotient ring, F a nonzero generalized derivation of R, f(x1,…,xn) a noncentral multilinear polynomial over C in n noncommuting variables, and a,b∈R such that a[F(f(r1,…,rn)),f(r1,…,rn)]b=0 for any r1,…,rn∈R. Then one of the following holds: (1) a=0; (2) b=0; (3) there exists λ∈C such that F(x)=λx, for all x∈R; (4) there exist q∈U and λ∈C such that F(x)=(q+λ)x+xq, for all x∈R, and f(x1,…,xn)2 is central valued on R; (5) there exist q∈U and λ,μ∈C such that F(x)=(q+λ)x+xq, for all x∈R, and aq=μa, qb=μb.


Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6251-6266
Author(s):  
S.K. Tiwari ◽  
B. Prajapati

Let R be a prime ring of characteristic different from 2 and F a b-generalized derivation on R. Let U be Utumi quotient ring of R with extended centroid C and f (x1,..., xn) be a multilinear polynomial over C which is not central valued on R. Suppose that d is a non zero derivation on R such that d([F(f(r)), f(r)]) ? C for all r = (r1,..., rn) ? Rn, then one of the following holds: (1) there exist a ? U, ? ? C such that F(x) = ax + ?x + xa for all x ? R and f (x1,..., xn)2 is central valued on R, (2) there exists ? ? C such that F(x) = ?x for all x ? R.


2021 ◽  
Vol 39 (4) ◽  
pp. 131-141
Author(s):  
Basudeb Dhara ◽  
Venus Rahmani ◽  
Shervin Sahebi

Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy)+G(yx))n= (xy ±yx) for all x,y ∈ I, then one ofthe following holds:(1) R is commutative;(2) n = 1 and H(x) = x and G(x) = ±x for all x ∈ R.Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.


Sign in / Sign up

Export Citation Format

Share Document