scholarly journals Some Results on Super Quasi-Einstein Manifolds

ISRN Geometry ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Shyamal Kumar Hui ◽  
Richard S. Lemence

This paper deals with the study of super quasi-Einstein manifolds admitting -curvature tensor. The totally umbilical hypersurfaces of are also studied. Among others, the existence of such a manifold is ensured by a nontrivial example.












2018 ◽  
Vol 15 (09) ◽  
pp. 1850157 ◽  
Author(s):  
Absos Ali Shaikh ◽  
Haradhan Kundu

The projective curvature tensor is an invariant under geodesic preserving transformations on semi-Riemannian manifolds. It possesses different geometric properties than other generalized curvature tensors. The main object of the present paper is to study some semisymmetric type and pseudosymmetric type curvature restricted geometric structures due to projective curvature tensor. The reduced pseudosymmetric type structures for various Walker type conditions are deduced and the existence of Venzi space is ensured. It is shown that the geometric structures formed by imposing projective operator on a (0,4)-tensor is different from that for the corresponding (1,3)-tensor. Characterization of various semisymmetric type and pseudosymmetric type curvature restricted geometric structures due to projective curvature tensor are obtained on semi-Riemannian manifolds, and it is shown that some of them reduce to Einstein manifolds for the Riemannian case. Finally, to support our theorems, four suitable examples are presented.



2016 ◽  
Vol 103 (1) ◽  
pp. 45-58
Author(s):  
C. P. AQUINO ◽  
M. BATISTA ◽  
H. F. DE LIMA

In this paper, we establish new characterization results concerning totally umbilical hypersurfaces of the hyperbolic space$\mathbb{H}^{n+1}$, under suitable constraints on the behavior of the Lorentzian Gauss map of complete hypersurfaces having some constant higher order mean curvature. Furthermore, working with different warped product models for$\mathbb{H}^{n+1}$and supposing that certain natural inequalities involving two consecutive higher order mean curvature functions are satisfied, we study the rigidity and the nonexistence of complete hypersurfaces immersed in$\mathbb{H}^{n+1}$.



Author(s):  
Ronaldo F. de Lima ◽  
João Paulo dos Santos




Filomat ◽  
2015 ◽  
Vol 29 (3) ◽  
pp. 443-456 ◽  
Author(s):  
Sinem Güler ◽  
Sezgin Demirbağ

In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R?S = 0,R?S = LSQ(g,S), C?S = 0,?C?S = 0,?W?S = 0 and W2?S = 0 where R, S, C,?C,?W and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor and W2-curvature tensor. Later, we find some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivial example.



Sign in / Sign up

Export Citation Format

Share Document