scholarly journals A QSPR Study for the Prediction of the pKa of N-Base Ligands and Formation Constant Kc of Bis(2,2′-bipyridine)Platinum(II)-N-Base Adducts Using Quantum Mechanically Derived Descriptors

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Selami Palaz ◽  
Baki Türkkan ◽  
Erol Eroğlu

Quantitative structure-property relationship (QSPR) study on the acid dissociation constant, pKa of various 22 N-base ligands including pyridines, pyrimidines, purines, and quinolines has been carried out using Codessa Pro methodology and software. In addition, the formation constant, Kc of these ligands with Pt(II)(bpy)2 2+ (bpy = 2,2′-bipyridine) ion has also been modelled with the same methodology. Linear regression QSPR models of pKa and Kc were established with descriptors derived from AM1 calculations. Among the obtained QSPR models of pKa presented in the study, statistically the most significant one is a four parameters linear equation with the squared correlation coefficient, R2 values of ca. 0.95 and the squared cross-validated correlation coefficient, Rcv2 values of ca. 0.89, and external the squared correlation coefficient, Rext.2 values of ca. 0.97. Statistically the most significant QSPR model of Kc is also a four parameters linear equation with the squared correlation coefficient, R2 values of ca. 0.75 and the squared cross-validated correlation coefficient, Rcv2 values of ca. 0.55, and external the squared correlation coefficient, Rext.2 values of ca. 0.81. An analysis of descriptors that involved in the pKa models indicate that reactivity index and charge distribution related descriptors play major roles to model acid dissociation constant of ligands of N bases.


2021 ◽  
Vol 27 (8) ◽  
Author(s):  
Fernando Marques Carvalho ◽  
Yuri Alves de Oliveira Só ◽  
Alessandra Sofia Kiametis Wernik ◽  
Mônica de Abreu Silva ◽  
Ricardo Gargano


Author(s):  
G Manjooran

pKa of a drug is the pH at which 50% of the drug is ionised and 50% is not ionised/unionised. The pKa is specific for each drug and these properties determine how a drug can be administered, the speed of absorption as well as speed of excretion by the kidneys.



1991 ◽  
Vol 318 (1-2) ◽  
pp. 111-129 ◽  
Author(s):  
Stuart Licht ◽  
Kevin Longo ◽  
Dharmasena Peramunage ◽  
Fardad Forouzan


2019 ◽  
Vol 57 (8) ◽  
pp. 745-750
Author(s):  
İlkay Konçe ◽  
Ebru Çubuk Demiralay ◽  
Hülya Yılmaz Ortak

Abstract The presented study describes the development of reversed-phase liquid chromatography method using a core-shell particle column with a pentafluorophenyl stationary phase for the dissociation constant (pKa) determination of the tetracycline group antibiotics (tetracycline, oxytetracycline, chlortetracycline) and their epimers (4-epitetracycline, 4-epioxytetracycline, 4-epichlortetracycline). The pH values were measured in the acetonitrile (ACN)–water binary mixtures, used as mobile phases, instead of in water and take into account the effect of the activity coefficients. Thermodynamic acid dissociation constant (pKa1) values of studied antibiotics and their epimers were calculated using retention factor (k) at different mobile phase pH values in studied binary mixtures with ACN percentages of 20, 25, 30 and 35% (v/v). Experimental data were analyzed by using an Origin 7.0 program to fit experimental data to the nonlinear expression derived. From calculated pKa1 values, the aqueous pKa values of studied compounds were calculated by different approaches and these values were compared.



1972 ◽  
Vol 6 ◽  
pp. 299-302 ◽  
Author(s):  
G. Navon ◽  
R. Panigel ◽  
D. Meyerstein


Sign in / Sign up

Export Citation Format

Share Document