carbon chain
Recently Published Documents


TOTAL DOCUMENTS

1451
(FIVE YEARS 334)

H-INDEX

63
(FIVE YEARS 10)

ASTONJADRO ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 219
Author(s):  
I Gede Indra Mahendra ◽  
I Dewa Gede Agung Diasana Putra

<p>The market is a place where basic needs such as food can be purchased. The high demand for food in Denpasar is dominated by the needs of the tourism sector and the community. The fulfillment of the need for food is highly dependent on the agricultural sector. The increasing need for food is inversely proportional to the aspect of supporting the fulfillment of needs because the condition of agricultural land in Denpasar City is decreasing every year, so it must depend on outside areas such as Tabanan Regency, Bangli and the largest imported from Java. The ability of a region to produce food that can guarantee sufficient food needs by utilizing the existing potential can achieve food independence. The application of agricultural systems to produce food in urban areas really needs to be developed to provide access to adequate food to meet food needs. This article aims to explore the potential of urban urban areas that are integrated with traditional markets in urban areas at Sindu Market. Located in the Sanur tourism sector area, Sindu Market has potential that can be directed to become a tourism-based market. Furthermore, this article aims to determine the condition of food self-sufficiency in Denpasar City and the areas that supply food needs for Denpasar City by implementing the Urban Farming system. The implementation of the Urban Farming system will shorten the carbon chain in terms of distributing food ingredients from outside Denpasar City. The research method used is qualitative with a descriptive approach. Data was collected by observation and interviews. The results showed that the food needs of the city of Denpasar were still not independent of their own food needs so that an innovative idea was born in the form of implementing the Urban Farming system at the Sindu Market, which was expected to be a solution to the problem of food needs in Denpasar City.</p>


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 515
Author(s):  
Qi Luo ◽  
Jiale Huang

The critical issue of the durability of marine concrete lies in the continuous penetration and rapid enrichment of corrosive ions. Here a new ion transfer inhibitor, as TIA, with calcium silicate hydrate (C-S-H) interfacial affinity and hydrophobicity is proposed through insights from molecular dynamics into the percolation behavior of the ion solution in C-S-H nano-channels and combined with molecular design concepts. One side of the TIA can be adsorbed on the surface of the cement matrix and can form clusters of corrosive ions to block the gel pores so as to resist the ion solution percolation process. Its other side is structured as a hydrophobic carbon chain, similar to a door hinge, which can stick to the matrix surface smoothly before the erosion solution is percolated. It can then change into a perpendicular chain shape to reduce the percolation channel’s diameter and thereby inhibit the percolation when ions meet the inhibitor. Therefore, once the erosion solution contacts TIA, it can quickly chelate with calcium ions and erosion ions at the interface to form clusters and compact pores. In addition, the water absorption, chloride migration coefficient, and chloride content of concrete samples decreased significantly after adding TIA, proving that TIA can effectively enhance the durability of cement-based materials. The structure–activity relationship of ion transfer that is proposed can provide new ideas for solving the critical problems of durability of cement-based materials and polymer molecular design.


2022 ◽  
Vol 12 (2) ◽  
pp. 599
Author(s):  
Jian Wang ◽  
Tianxia Liu

The homemade soot capture device was used to burn Fischer-Tropsch synthetic diesel (F-T diesel) in order to simulate the combustion of F-T diesel in the engine and collect its soot (F-T DS, FS). The zinc-iron hydrotalcite (ZnFe-LDH) and the composite materials of FS and ZnFe-LDH (F-T DS/ZnFe-LDH, FS/ZnFe-LDH) were prepared by hydrothermal synthesis, and the similarities and differences in tribological characteristics of the above three lubricating materials such as 10# white oil (10# WO) lubricant additives were investigated. FS is an aggregation composed of amorphous carbon and graphite microcrystals. ZnFe-LDH is mainly composed of nanosheets, Zn, and Fe hydroxide particles, with a high degree of crystallization, while FS/ZnFe-LDH is a “sandwich layer” composed of nanosheets and soot particles. Because of the addition of cetyltrimethylammonium bromide and the grafting of a long carbon chain lipophilic group in the preparation process, FS/ZnFe-LDH has better anti-wear properties than the FS and ZnFe-LDH Effect. When FS/ZnFe-LDH is added at 0.2 wt.%, the average friction coefficient (AFC) and average wears scar diameter (AWSD) are at their lowest. Compared with pure 10# WO, the minimum values of AFC and AWSD have dropped by 36.84% and 22.58%, respectively. XPS analysis of the wear scar surface shows that when ZnFe-LDH and FS/ZnFe-LDH are used as lubricating additives of 10# WO, together with the organic matter in the white oil and the iron element in the friction pair, tribochemistry occurs under the combined action of the adsorption force and the tribochemical reaction, a friction protection film containing four elements of C, O, Fe, and Zn is formed on the surface of the wear scar, which effectively reduces the wear and reduces the friction coefficient.


2022 ◽  
Author(s):  
Carlo Bravin ◽  
Giuseppe Mazzeo ◽  
Sergio Abbate ◽  
Giulia Licini ◽  
Giovanna Longhi ◽  
...  

Confinement within supramolecular systems is the leading technology to finely tune guest functional properties. In this communication we report the synthesis of a chiral supramolecular cage able to bias the...


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 142
Author(s):  
Bartłomiej Rogalewicz ◽  
Tomasz Maniecki ◽  
Radosław Ciesielski ◽  
Agnieszka Czylkowska

In one of our previously published articles, we reported the synthesis, spectroscopic, thermal, and catalytic properties of four new M(II) acetate (where M = Co, Ni, Cu, Zn) complexes with imidazole. Presented compounds exhibited activity in the reaction on catalytic oxidation of styrene. In this study we have synthesized and investigated properties of analogous compounds, however using formates or propionates of mentioned metal cations instead of acetates. Such an approach allowed us to draw valuable conclusions concerning the relationship between the carbon chain length and catalytic activity, which is an important factor for catalyst modeling. Synthesized compounds have been thoroughly investigated using appropriate analytic techniques: AAS (Atomic Absorption Spectrometry), FTIR (Fourier-Transform Infrared Spectroscopy), and TGA (Thermogravimetric Analysis). Catalytic properties have been studied under the same previous conditions, using GC-FID (GC-chromatograph equipped with FID detector).


2021 ◽  
Author(s):  
Yang Liu ◽  
Kaihu Xian ◽  
Ruohua Gui ◽  
Kangkang Zhou ◽  
Junwei Liu ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Yanhui Niu ◽  
Wenbin Yu ◽  
Shuguang Yang ◽  
Quan Wan

The pyrolytic behavior of organic matter inside nanopores was studied by simultaneous thermogravimetric/differential scanning calorimetry analyzer coupled with Fourier transform infrared spectroscopy (STA/TG-FTIR). Nanoporous silica was prepared by a hydrothermal method using long-chain alkyl quaternary ammonium bromide (CnTAB, n = 12, 14) as a template. The pyrolytic behavior of CnTAB inside nanopores with different diameters was investigated and compared with that of CnTAB inside and outside nanopores. The results showed that the pyrolytic removal process consisted of the following features: 1) CnTAB underwent carbon chain decomposition and oxidation; 2) the DSC exothermal peak of CnTAB came mainly from its oxidative combustion, and the oxidative combustion temperature decreased with increasing pore size; 3) the CnTAB inside nanopores underwent crystallization–amorphous state phase transition, and CnTAB got trapped inside the calcined nanopores. In addition, the pyrolytic behavior of CnTAB inside the calcined nanopores was found to be similar to that of the uncalcined nanopores. This study aims to understand the storage and transformation processes of organic hydrocarbons under nanopore-confinement effect.


Author(s):  
Nina Sadlej-Sosnowska ◽  
Agnieszka Ocios-Bębenek ◽  
Jan Cz. Dobrowolski ◽  
Dariusz Boczar

AbstractCumulenes and polyynes have the potential to be applied as linear, sp-hybridized, one-dimensional all-carbon nanowires in molecular electronics and optoelectronics. The delocalization and conductivity descriptors of the two π-conjugated systems, heterodisubstituted with the NO2, CN, NH2, and OH groups, were studied using the B3LYP, B3LYP/D3, CAM-B3LYP, and ωB97XD DFT functionals, combined with the aug-cc-pVTZ basis set. Three independent types of molecular descriptors, based on geometry (the HOMA index), electrical properties (trace of the polarizability tensor), and energetic (the HOMO-LUMO energy gap) were shown to be mutually correlated and provided concordant indication that communication through the cumulene chain was considerably better than through the polyyne one. The communication can be tuned by using substituents of significantly different π-electron donor-acceptor properties as well as by the external electric field directed along the carbon chain.


Author(s):  
Ruigang Yang ◽  
Lingyun Zhu ◽  
Tao Li ◽  
Lv-yun Zhu ◽  
Zi Ye ◽  
...  

Metabolic engineering of cyanobacteria has received much attention as a sustainable strategy to convert CO2 to various longer carbon chain fuels. Pinene has become increasingly attractive since pinene dimers contain high volumetric energy and have been proposed to act as potential aircraft fuels. However, cyanobacteria cannot directly convert geranyl pyrophosphate into pinene due to the lack of endogenous pinene synthase. Herein, we integrated the gene encoding Abies grandis pinene synthase into the model cyanobacterium Synechococcus sp. PCC 7002 through homologous recombination. The genetically modified cyanobacteria achieved a pinene titer of 1.525 ± 0.l45 mg L−1 in the lab-scale tube photobioreactor with CO2 aeration. Specifically, the results showed a mixture of α- and β-pinene (∼33:67 ratio). The ratio of β-pinene in the product was significantly increased compared with that previously reported in the engineered Escherichia coli. Furthermore, we investigated the photoautotrophic growth performances of Synechococcus overlaid with different concentrations of dodecane. The work demonstrates that the engineered Synechococcus is a suitable potential platform for β-pinene production.


Sign in / Sign up

Export Citation Format

Share Document