scholarly journals Genetic variability assessment in ‘Muscat’ grapevines including ‘Muscat of Alexandria’ clones from selection programs

2018 ◽  
Vol 16 (2) ◽  
pp. e0702 ◽  
Author(s):  
Rosa Peiró ◽  
Jaume X. Soler ◽  
Andrés Crespo ◽  
Carles Jiménez ◽  
Félix Cabello ◽  
...  

Genetic variability is needed to face environmental changes and pathogen constrains. In addition, the search for intravarietal variability contributes to the avoidance of genetic erosion, preserving clones that are adapted to particular conditions. Variability is also important to diversify grapevine-derived products. In this work, we have analyzed the genetic variability of ‘Muscat germplasm’ including samples from neglected vineyards from Alicante and Valencia provinces, accessions of the germplasm collections of ‘Colección de Vides de El Encín’ (Alcalá de Henares, Madrid) and ‘La Casa de las Vides’ (Agullent, Valencia), accessions supplied by nurseries of Valencia province, and ‘Muscat of Alexandria’ clones selected using differential ampelographic characteristics in selection programs (La Marina, Alicante). Fifteen microsatellites (SSRs) were used to study intervarietal variability. The SSR fingerprinting allowed the identification of some accessions, variants, and synonymies. Amplified Fragment Length Polymorphisms (AFLPs) markers and Microsatellite-AFLPs were used to determine the variability attended in ‘Muscat of Alexandria’ accessions. A CAPs (Cleaved Amplified Polymorphic Sequences) marker, recently developed for the discrimination of ‘Muscat’ flavor genotypes using the SNP1822 G>T, was assessed and showed that all the analyzed accessions were ‘Muscat’ flavored. The variation found among the analyzed germplasm is very interesting because variants within ‘Muscat of Alexandria’, ‘Muscat Italia’, and ‘Muscat d’Istambul’ have been identified. In addition, intravarietal genetic variation was found among the analyzed accessions in ‘Muscat of Alexandria’ from selection programs.

2003 ◽  
Vol 81 (8) ◽  
pp. 805-813 ◽  
Author(s):  
Hannele Lindqvist-Kreuze ◽  
Hilkka Koponen ◽  
Jari P.T Valkonen

The levels of genotypic and genetic variation were estimated in six natural populations of arctic bramble (Rubus arcticus L. subsp. arcticus) in Finland. Using three primer combinations, a total of 117 amplified fragment length polymorphisms (AFLP) were found. The results were highly reproducible and allowed identification of 78 genets among the 122 plants of arctic bramble studied. Genotypic variation measured as Simpson index (D) was high in all populations, ranging from 0.72 to 0.94. Also, the level of genetic variation measured as Shannon index was relatively high in all populations, ranging from 0.19 to 0.32 (average 0.26). The high levels of genetic diversity indicate that sexual reproduction has played a significant role in these populations. The hierarchical analysis of molecular variance (AMOVA) partitioned 48% of the genetic variation among populations, suggesting a high level of population differentiation and a low level of interpopulation gene flow. Genetic diversity among ten currently grown cultivars of arctic bramble and hybrid arctic bramble (R. arcticus subsp. arcticus × R. arcticus subsp. stellatus) was large, and the subspecies were clearly distinguished from each other based on the AFLP marker data.Key words: AFLP, AMOVA, population, natural habitat, Rubus arcticus subsp. arcticus, Rubus arcticus subsp. stellatus.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 637-643 ◽  
Author(s):  
Nathan C. Phillips ◽  
Steven R. Larson ◽  
Daniel T. Drost

Three wild onion species native to the intermountain west in the United States—Allium acuminatum, A. brandegei, and A. passeyi—show horticultural potential, but little is known about patterns of genetic diversity among localized populations and geographical regions. We examined amplified fragment length polymorphisms (AFLP) within and among five Allium acuminatum, four A. brandegei, and three A. passeyi collection sites in Utah. These three congeners with contrasting abundance and distribution patterns provide an opportunity to investigate the role of geographic distance, altitude, and rarity in patterns of genetic divergence. The collection sites were selected along an altitudinal gradient to reflect ecogeographic variation. Individual plants from each of the 12 sites were genotyped using six AFLP primer combinations detecting DNA variation within and among all three species. Genetic differences between species were high enough to render comparisons among species impractical, so each species was analyzed separately for differences between populations and variability within populations. Similarity coefficients were significantly greater within collection sites versus among collection sites indicating divergence between populations. Within-population genetic diversity was not correlated with elevation for any of the three species. Analysis of molecular variance revealed that 66% (A. acuminatum), 83% (A. passeyi), and 64% (A. brandegei) of observed variation is found within populations. Genetic divergence among populations (ФST) was higher in the widely distributed species, suggesting that interpopulation gene flow may be negatively correlated with range size. Allium acuminatum and A. brandegei individuals cluster into groups corresponding strictly to collection sites based on neighbor-joining analysis of the total number of DNA polymorphisms between individual plants. Allium passeyi populations, however, had less overall genetic variation between populations. Genetic isolation by distance appeared responsible for much of the variability among populations, although there was one notable exception showing significant differences between two geographically close populations in A. acuminatum.


Author(s):  
Sanjuana Hernández-Delgado ◽  
Netzahualcoyotl Mayek-Pérez ◽  
Gustavo Emilio Santos-Medrano ◽  
Roberto Rico-Martínez

Hydrobiologia ◽  
2005 ◽  
Vol 546 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Sanjuana Hernández-Delgado ◽  
Netzahualcoyotl Mayek-Pérez ◽  
Gustavo Emilio Santos-Medrano ◽  
Roberto Rico-Martínez

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 967C-967 ◽  
Author(s):  
Nathan C. Phillips ◽  
Steve R. Larson ◽  
Daniel T. Drost

The genus Allium is distributed worldwide and includes about 80 North American species, with at least 13 occurring in Utah. Our study focuses on the population dynamics of three Allium species native to Utah; Allium acuminatum, A. brandegei, and A. passeyi. In conjunction with our studies of life history, growth characteristics, demographics, and habitat, we are interested in determining the levels of genetic variation in these species. This study examines amplified fragment length polymorphism (AFLP) within and among five Allium acuminatum, four A. brandegei, and three A. passeyi populations native to Utah. These species have contrasting abundance and distribution. The study populations were selected along an elevation gradient to represent within-species habitat differences. About 10–20 plants from each of the 12 populations were genotyped using six AFLP primer combinations, which detect DNA variation within and among all three species. These data will be used to compare levels of genetic variation and isolation among populations and species.


2002 ◽  
Vol 73 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Veerle Lamote ◽  
Isabel Roldán-Ruiz ◽  
Els Coart ◽  
Marc De Loose ◽  
Erik Van Bockstaele

Sign in / Sign up

Export Citation Format

Share Document