scholarly journals Initial Mass Function and Star Formation History in the Small Magellanic Cloud

2014 ◽  
Vol 35 (5) ◽  
pp. 362-374
Author(s):  
Ki-Won Lee
2011 ◽  
Vol 742 (2) ◽  
pp. 108 ◽  
Author(s):  
Keely D. Finkelstein ◽  
Casey Papovich ◽  
Steven L. Finkelstein ◽  
Christopher N. A. Willmer ◽  
Jane R. Rigby ◽  
...  

2019 ◽  
Vol 489 (2) ◽  
pp. 2377-2394 ◽  
Author(s):  
A Sollima

Abstract I use a sample of more than 120 000 stars in the solar neighbourhood, with parallaxes, magnitudes and colours estimated with unprecedented accuracy by the second data release of the Gaia mission, to derive the initial mass function of the Galactic disc. A full-forward technique is used to take into account, for the population of unresolved binaries, the metallicity distribution and the star formation history, including their variation across the Galactic disc, as well as all the observational effects. The shape of the initial mass function is well represented by a segmented power law with two breaks at characteristic masses. It has a maximum at M ∼ 0.15 M⊙ with significant flattening (possibly a depletion) at lower masses and a slope of α = −1.34 ± 0.07 in the range 0.25 < M/M⊙ < 1. Above 1 M⊙, the initial mass function shows an abrupt decline with a slope ranging from α = −2.68 ± 0.09 to α = −2.41 ± 0.11, depending on the adopted resolution of the star formation history.


1999 ◽  
Vol 190 ◽  
pp. 351-353
Author(s):  
J. Holtzman ◽  
J. R. Mould ◽  
J. S. Gallagher

We present deep photometry to V ~ 27.5 obtained with the HST in several fields in the LMC and the SMC. We derive luminosity functions for the faintest stars which are consistent with an initial mass function similar to that of the solar neighborhood, although moderate variations are not excluded. We discuss implications of these observations for the star formation history in these regions of the LMC and SMC.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2020 ◽  
Vol 492 (4) ◽  
pp. 5003-5010 ◽  
Author(s):  
G Ourique ◽  
S O Kepler ◽  
A D Romero ◽  
T S Klippel ◽  
D Koester

ABSTRACT Since the Gaia data release 2, several works have been published describing a bifurcation in the observed white dwarf colour−magnitude diagram for ${G_{\mathrm{BP}}}{}-{G_{\mathrm{RP}}}{} \gt 0$. Some possible explanations in the literature include the existence of a double population with different initial mass functions or two distinct populations, one formed by hydrogen-envelope and one formed by helium-envelope white dwarfs. We propose instead spectral evolution to explain the bifurcation. From a population synthesis approach, we find that spectral evolution occurs for effective temperatures below ${\simeq }11\, 000\, \mathrm{K}$ and masses mainly between $0.64\, \mathrm{M}_\odot$ and $0.74\, \mathrm{M}_\odot$, which correspond to around 16 per cent of all DA white dwarfs. We also find that the Gaia white dwarf colour–magnitude diagram indicates a star formation history that decreases abruptly for objects younger than $1.4\, \mathrm{Gyr}$ and a top-heavy initial mass function for the white dwarf progenitors.


Sign in / Sign up

Export Citation Format

Share Document