scholarly journals Approximate Solution of Generalized Modified b-Equation by Optimal Auxiliary Function Method

2012 ◽  
Vol 22 (05) ◽  
pp. 1250126 ◽  
Author(s):  
FANG YAN ◽  
CUNCAI HUA ◽  
HAIHONG LIU ◽  
ZENGRONG LIU

By using the method of dynamical systems, this paper studies the exact traveling wave solutions and their bifurcations in the Gardner equation. Exact parametric representations of all wave solutions as well as the explicit analytic solutions are given. Moreover, several series of exact traveling wave solutions of the Gardner–KP equation are obtained via an auxiliary function method.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muhammad Akbar ◽  
Rashid Nawaz ◽  
Sumbal Ahsan ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

In this work, a reliable technique is used for the solution of a system of Volterra integral equations (VIEs), called optimal homotopy asymptotic method (OHAM). The proposed technique is successfully applied for the solution of different problems, and comparison is made with the relaxed Monto Carlo method (RMCM) and hat basis function method (HBFM). The comparisons show that the present technique is more suitable and reliable for the solution of a system of VIEs. The presented technique uses auxiliary function containing auxiliary constants, which control the convergence. Moreover, OHAM does not require discretization like other numerical methods and is also free from small or large parameter.


Optimization ◽  
2013 ◽  
Vol 62 (2) ◽  
pp. 193-210 ◽  
Author(s):  
Z.Y. Wu ◽  
F.S. Bai ◽  
Y.J. Yang ◽  
M. Mammadov

2015 ◽  
Vol 2015 ◽  
pp. 1-16
Author(s):  
Lei Fan ◽  
Yuping Wang ◽  
Xiyang Liu ◽  
Liping Jia

Auxiliary function methods provide us effective and practical ideas to solve multimodal optimization problems. However, improper parameter settings often cause troublesome effects which might lead to the failure of finding global optimal solutions. In this paper, a minimum-elimination-escape function method is proposed for multimodal optimization problems, aiming at avoiding the troublesome “Mexican hat” effect and reducing the influence of local optimal solutions. In the proposed method, the minimum-elimination function is constructed to decrease the number of local optimum first. Then, a minimum-escape function is proposed based on the minimum-elimination function, in which the current minimal solution will be converted to the unique global maximal solution of the minimum-escape function. The minimum-escape function is insensitive to its unique but easy to adopt parameter. At last, an minimum-elimination-escape function method is designed based on these two functions. Experiments on 19 widely used benchmarks are made, in which influences of the parameter and different initial points are analyzed. Comparisons with 11 existing methods indicate that the performance of the proposed algorithm is positive and effective.


2015 ◽  
Vol 11 (2) ◽  
pp. 345-364 ◽  
Author(s):  
Zhiyou Wu ◽  
◽  
Fusheng Bai ◽  
Guoquan Li ◽  
Yongjian Yang ◽  
...  

Fractals ◽  
2021 ◽  
Author(s):  
LAIQ ZADA ◽  
RASHID NAWAZ ◽  
MOHAMMAD A. ALQUDAH ◽  
KOTTAKKARAN SOOPPY NISAR

In the present paper, the optimal auxiliary function method (OAFM) has been extended for the first time to fractional-order partial differential equations (FPDEs) with convergence analysis. To find the accuracy of the OAFM, we consider the fractional-order KDV-Burger and fifth-order Sawada–Kotera equations as a test example. The proposed technique has auxiliary functions and convergence control parameters, which accelerate the convergence of the method. The other advantage of this method is that there is no need for a small or large parameter assumption, and it gives an approximate solution after only one iteration. Further, the obtained results have been compared with the exact solution through different graphs and tables, which shows that the proposed method is very effective and easy to implement for different FPDEs.


2021 ◽  
Vol 60 (5) ◽  
pp. 4809-4818
Author(s):  
Rashid Nawaz ◽  
Laiq Zada ◽  
Farman Ullah ◽  
Hijaz Ahmad ◽  
Muhammad Ayaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document