scholarly journals Mechanical Proof of the Maxwell Speed Distribution

2019 ◽  
Vol 8 (2) ◽  
pp. 90
Author(s):  
Tsung-Wu Lin ◽  
Hejie Lin

This article derives the probability density function ψξ;x,x'  of the resulting speed ξ  from the collision of two particles with speeds x  and x' . This function had been left unsolved for about 150 years. Then uses two approaches to obtain the Maxwell speed distribution: (1) Numerical iteration: using the equation Pnewξ=0∞0∞ψξ;x,x' ∙Poldx∙Poldx' dxdx'   to get the new speed distribution from the old speed distribution. Also, after 9 iterations, the distribution converges to the Maxwell speed distribution. (2) Analytical integration: using the Maxwell speed distribution as the Poldx , and then getting Pnewξ  from the above integration. The result of Pnewξ  from analytical integration is proved to be exactly the Maxwell speed distribution.

2021 ◽  
Vol 10 (4) ◽  
pp. 21
Author(s):  
Hejie Lin ◽  
Tsung-Wu Lin

The Maxwell-Boltzmann speed distribution is the probability distribution that describes the speeds of the particles of ideal gases. The Maxwell-Boltzmann speed distribution is valid for both un-mixed particles (one type of particle) and mixed particles (two types of particles). For mixed particles, both types of particles follow the Maxwell-Boltzmann speed distribution. Also, the most probable speed is inversely proportional to the square root of the mass. This paper proves the Maxwell-Boltzmann speed distribution and the speed ratio of mixed particles using computer-generated data based on Newton’s law of motion. To achieve this, this paper derives the probability density function ψ^ab(u_a;v_a,v_b)  of the speed u_a of the particle with mass M_a after the collision of two particles with mass M_a in speed v_a and mass M_b in speed v_b. The function ψ^ab(u_a;v_a,v_b)  is obtained through a unique procedure that considers (1) the randomness of the relative direction before a collision by an angle α. (2) the randomness of the direction after the collision by another independent angle. The function ψ^ab(u_a;v_a,v_b) is used in the equation below for the numerical iterations to get new distributions P_new^a(u_a) from old distributions P_old^a(v_a), and repeat with P_old^a(v_a)=P_new^a(v_a), where n_a is the fraction of particles with mass M_a.   P_new^1(u_1)=n_1 ∫_0^∞ ∫_0^∞ ψ^11(u_1;v_1,v’_1) P_old^1(v_1) P_old^1(v’_1) dv_1 dv’_1                           +n_2 ∫_0^∞ ∫_0^∞ ψ^12(u_1;v_1,v_2) P_old^1(v_1) P_old^2(v_2) dv_1 dv_2 P_new^2(u_2)=n_1 ∫_0^∞ ∫_0^∞ ψ^21(u_2;v_2,v_1) P_old^2(v_2) P_old^1(v_1) dv_2 dv_1                           +n_2 ∫_0^∞ ∫_0^∞ ψ^22(u_2;v_2,v’_2) P_old^2(v_2) P_old^2(v’_2) dv_2 dv’_2 The final distributions converge to the Maxwell-Boltzmann speed distributions. Moreover, the square of the root-mean-square speed from the final distribution is inversely proportional to the particle masses as predicted by Avogadro’s law.


Sign in / Sign up

Export Citation Format

Share Document