scholarly journals Recurrence relations for the midpoint method

2000 ◽  
Vol 31 (1) ◽  
pp. 33-42
Author(s):  
J. A. Ezquerro ◽  
M. A. Hernandez ◽  
M. A. Salanova

In this paper, we present a new convergence analysis and error estimates for the Midpoint method in Banach spaces by using Newton-Kantorovich-type assumptions and a technique based on a new system of recurrence relations. Finally, we give three examples where we improve the error bounds are better given by other authors.

2013 ◽  
Vol 10 (04) ◽  
pp. 1350021 ◽  
Author(s):  
M. PRASHANTH ◽  
D. K. GUPTA

A continuation method is a parameter based iterative method establishing a continuous connection between two given functions/operators and used for solving nonlinear equations in Banach spaces. The semilocal convergence of a continuation method combining Chebyshev's method and Convex acceleration of Newton's method for solving nonlinear equations in Banach spaces is established in [J. A. Ezquerro, J. M. Gutiérrez and M. A. Hernández [1997] J. Appl. Math. Comput.85: 181–199] using majorizing sequences under the assumption that the second Frechet derivative satisfies the Lipschitz continuity condition. The aim of this paper is to use recurrence relations instead of majorizing sequences to establish the convergence analysis of such a method. This leads to a simpler approach with improved results. An existence–uniqueness theorem is given. Also, a closed form of error bounds is derived in terms of a real parameter α ∈ [0, 1]. Four numerical examples are worked out to demonstrate the efficacy of our convergence analysis. On comparing the existence and uniqueness region and error bounds for the solution obtained by our analysis with those obtained by using majorizing sequences, it is found that our analysis gives better results in three examples, whereas in one example it gives the same results. Further, we have observed that for particular values of the α, our analysis reduces to those for Chebyshev's method (α = 0) and Convex acceleration of Newton's method (α = 1) respectively with improved results.


2010 ◽  
Vol 07 (02) ◽  
pp. 215-228 ◽  
Author(s):  
S. K. PARHI ◽  
D. K. GUPTA

The aim of this paper is to establish the semilocal convergence of a third order Stirling–like method employed for solving nonlinear equations in Banach spaces by using the first Fréchet derivative, which satisfies the Lipschitz continuity condition. This makes it possible to avoid the evaluation of higher order Fréchet derivatives which are computationally difficult at times or may not even exist. The recurrence relations are used for convergence analysis. A convergence theorem is given for deriving error bounds and the domains of existence and uniqueness of solutions. The R order of the method is also established to be equal to 3. Finally, two numerical examples are worked out, and the results obtained are compared with the existing results. It is observed that our convergence analysis is more effective.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Silvestru Sever Dragomir

In this paper we establish some error bounds in approximating the integral by general trapezoid type rules for Fréchet differentiable functions with values in Banach spaces.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Stoil I. Ivanov

In this paper, we establish two local convergence theorems that provide initial conditions and error estimates to guarantee the Q-convergence of an extended version of Chebyshev–Halley family of iterative methods for multiple polynomial zeros due to Osada (J. Comput. Appl. Math. 2008, 216, 585–599). Our results unify and complement earlier local convergence results about Halley, Chebyshev and Super–Halley methods for multiple polynomial zeros. To the best of our knowledge, the results about the Osada’s method for multiple polynomial zeros are the first of their kind in the literature. Moreover, our unified approach allows us to compare the convergence domains and error estimates of the mentioned famous methods and several new randomly generated methods.


Sign in / Sign up

Export Citation Format

Share Document