scholarly journals New classes of $k$-uniformly convex and starlike functions

2004 ◽  
Vol 35 (3) ◽  
pp. 261-266 ◽  
Author(s):  
Essam Aqlan ◽  
Jay M. Jahangiri ◽  
S. R. Kulkarni

Certain classes of analytic functions are defined which will generalize new, as well as well-known, classes of k-uniformly convex and starlike functions. We provide necessary and sufficent coefficient conditions, distortion bounds, extreme points and radius of starlikeness for these classes.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
R. M. El-Ashwah ◽  
M. K. Aouf ◽  
A. A. M. Hassan ◽  
A. H. Hassan

We introduce certain new classes κ−VST(α,β) and κ−VUCV(α,β), which represent the κ uniformly starlike functions of order α and type β with varying arguments and the κ uniformly convex functions of order α and type β with varying arguments, respectively. Moreover, we give coefficients estimates, distortion theorems, and extreme points of these classes.


Author(s):  
Deepali Khurana ◽  
Raj Kumar ◽  
Sibel Yalcin

We define two new subclasses, $HS(k, \lambda, b, \alpha)$ and \linebreak $\overline{HS}(k, \lambda, b, \alpha)$, of univalent harmonic mappings using multiplier transformation. We obtain a sufficient condition for harmonic univalent functions to be in $HS(k,\lambda,b,\alpha)$ and we prove that this condition is also necessary for the functions in the class $\overline{HS} (k,\lambda,b,\alpha)$. We also obtain extreme points, distortion bounds, convex combination, radius of convexity and Bernandi-Libera-Livingston integral for the functions in the class $\overline{HS}(k,\lambda,b,\alpha)$.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Saqib Hussain ◽  
Akhter Rasheed ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

We investigate some subclasses ofk-uniformly convex andk-uniformly starlike functions in open unit disc, which is generalization of class of convex and starlike functions. Some coefficient inequalities, a distortion theorem, the radii of close-to-convexity, and starlikeness and convexity for these classes of functions are studied. The behavior of these classes under a certain modified convolution operator is also discussed.


2019 ◽  
Vol 28 (1) ◽  
pp. 85-90
Author(s):  
YASAR POLATOGLU ◽  
◽  
ASENA CETINKAYA ◽  
OYA MERT ◽  
◽  
...  

In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with q- analogues in the open unit disc \mathbb D. We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with q- analogues denoted by \mathcal{R}_k(q), where k\geq2, q\in(0,1).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
A. Y. Lashin

Coefficient conditions, distortion bounds, extreme points, convolution, convex combinations, and neighborhoods for a new class of harmonic univalent functions in the open unit disc are investigated. Further, a class preserving integral operator and connections with various previously known results are briefly discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Akhter Rasheed ◽  
Saqib Hussain ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

In this paper, we introduce a new subclass of analytic functions in open unit disc. We obtain coefficient estimates, extreme points, and distortion theorem. We also derived the radii of close-to-convexity and starlikeness for this class.


2013 ◽  
Vol 94 (2) ◽  
pp. 202-221
Author(s):  
KEIKO DOW ◽  
D. R. WILKEN

AbstractExtreme points of compact, convex integral families of analytic functions are investigated. Knowledge about extreme points provides a valuable tool in the optimization of linear extremal problems. The functions studied are determined by a two-parameter collection of kernel functions integrated against measures on the torus. For specific choices of the parameters many families from classical geometric function theory are included. These families include the closed convex hull of the derivatives of normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many others. The main result introduces a surprising new class of extreme points.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
G. Murugusundaramoorthy ◽  
C. Selvaraj ◽  
O. S. Babu

Making use of fractional q-calculus operators, we introduce a new subclass ℳq(λ,γ,k) of starlike functions and determine the coefficient estimate, extreme points, closure theorem, and distortion bounds for functions in ℳq(λ,γ,k). Furthermore we discuss neighborhood results, subordination theorem, partial sums, and integral means inequalities for functions in ℳq(λ,γ,k).


10.53733/87 ◽  
2021 ◽  
Vol 51 ◽  
pp. 39-48
Author(s):  
Keiko Dow

Non extreme points of compact, convex integral families of analytic functions are investigated. Knowledge about extreme points provides a valuable tool in the optimization of linear extremal problems. The functions studied are determined by a 2-parameter collection of kernel functions integrated against measures on the torus. Families from classical geometric function theory such as the closed convex hull of the derivatives of normalized close-to-convex functions, the ratio of starlike functions of different orders, as well as many others are included. However for these families of analytic functions, identifying “all” the extreme points remains a difficult challenge except in some special cases. Aharonov and Friedland [1] identified a band of points on the unit circle which corresponds to the set of extreme points for these 2-parameter collections of kernel functions. Later this band of extreme points was further extended by introducing a new technique by Dow and Wilken [3]. On the other hand, a technique to identify a non extreme point was not investigated much in the past probably because identifying non extreme points does not directly help solving the optimization of linear extremal problems. So far only one point on the unit circle has beenidentified which corresponds to a non extreme point for a 2-parameter collections of kernel functions. This leaves a big gap between the band of extreme points and one non extreme point. The author believes it is worth developing some techniques, and identifying non extreme points will shed a new light in the exact determination of the extreme points. The ultimate goal is to identify the point on the unit circle that separates the band of extreme points from non extreme points. The main result introduces a new class of non extreme points.


2008 ◽  
Vol 41 (4) ◽  
Author(s):  
H. E. Darwish

AbstractUsing of Salagean operator, we define a new subclass of uniformly convex functions with negative coefficients and with fixed second coefficient. The main objective of this paper is to obtain coefficient estimates, distortion bounds, closure theorems and extreme points for functions belonging of this new class. The results are generalized to families with fixed finitely many coefficients.


Sign in / Sign up

Export Citation Format

Share Document