In-Vitro Susceptibility of Plasmodium falciparum to Antimalarial Drugs in Abuja, Nigeria

10.5580/2c12 ◽  
2012 ◽  
Vol 5 (1) ◽  
1987 ◽  
Vol 37 (3) ◽  
pp. 445-451 ◽  
Author(s):  
William M. Watkins ◽  
A. David Brandling-Bennett ◽  
David K. Koech ◽  
Robert E. Howells

2011 ◽  
Vol 106 (suppl 1) ◽  
pp. 123-129 ◽  
Author(s):  
Samanda L Aponte ◽  
Gustavo Díaz ◽  
Zuleima Pava ◽  
Diego F Echeverry ◽  
Darío Ibarguen ◽  
...  

2001 ◽  
Vol 65 (5) ◽  
pp. 450-455 ◽  
Author(s):  
C Wongsrichanalai ◽  
L W Pang ◽  
T Wimonwattrawatee ◽  
M A Faiz ◽  
H Noedl ◽  
...  

2020 ◽  
Vol 13 (7) ◽  
pp. 3398-3410
Author(s):  
O. Ifeoluwa Akanni ◽  
J.O. Ehinmidu ◽  
R.O. Bolaji

Nigeria carries the highest burden of malaria in terms of morbidity and mortality. This is compounded by continuous resistance of Plasmodium falciparum to antimalarial drugs. This study was designed to evaluate the profile of malaria patients’ antimalarial drug prescription and in vitro susceptibility of P. falciparum isolates to commonly prescribed antimalarial drugs in Kaduna, Nigeria. Three years’ records of patients antimalarial drug prescriptions were collated (2013 to 2015) and the in vitro antimalarial agent susceptibility was determined for 28 clinical isolates using WHO Mark III microtest. Artemisinin-based combination therapy (ACT) was the most prescribed antimalarial for the period under review (92.3-93.7%). Among the ACTs, Artemether-lumefantrine was most prescribed. Of the 28 P. falciparum isolates evaluated, 3 (10.71%) were resistant to chloroquine with a median IC50 of 4.82μM (4.60-8.14μM), while five (17.86%) were resistant to mefloquine with a median IC50 of 25μM (10.3-41μM), 7(25.00%) to artemether with a median IC50 of 2.69μM (2.09-8.77μM), 9 (32.14%) to artesunate-mefloquine combination with a median IC50 of 9.0μM (7.98-35μM) and to artesunate, 11(39.29%) were resistant with a median IC50 of 2.4μM (1.56-5.65μM). This result shows a decline in resistance of P. falciparum to chloroquine compared to period prior to artemisinin-combination therapy as well as reduced susceptibility to artesunate and artemether. Further in vitro and in vivo monitoring will be required to inform antimalarial drug policy change.Keywords: Antimalarial, Artemisinin-combination therapy, resistance, susceptibility, microtest.


2006 ◽  
Vol 50 (4) ◽  
pp. 1531-1534 ◽  
Author(s):  
P. Agnamey ◽  
P. Brasseur ◽  
P. Eldin de Pecoulas ◽  
Michel Vaillant ◽  
P. Olliaro

ABSTRACT We have monitored the in vitro sensitivities of Plasmodium falciparum isolates predeployment and during the deployment of artesunate plus amodiaquine treatment in Mlomp, Casamance (southwestern Senegal) during 2000 to 2004. Parasites remained susceptible to both drugs. Chloroquine resistance levels were high but stable. Quinine continues to be effective.


2021 ◽  
Vol 14 (4) ◽  
pp. 351
Author(s):  
Mathieu Gendrot ◽  
Océane Delandre ◽  
Marie Robert ◽  
Francis Foguim ◽  
Nicolas Benoit ◽  
...  

Half the human population is exposed to malaria. Plasmodium falciparum antimalarial drug resistance monitoring and development of new drugs are major issues related to the control of malaria. Methylene blue (MB), the oldest synthetic antimalarial, is again a promising drug after the break of its use as an antimalarial drug for more than 80 years and a potential partner for triple combination. Very few data are available on the involvement of polymorphisms on genes known to be associated with standard antimalarial drugs and parasite in vitro susceptibility to MB (cross-resistance). In this context, MB susceptibility was evaluated against 482 isolates of imported malaria from Africa by HRP2-based ELISA chemosusceptibility assay. A total of 12 genes involved in antimalarial drug resistance (Pfcrt, Pfdhfr, Pfmdr1, Pfmdr5, Pfmdr6, PfK13, Pfubq, Pfcarl, Pfugt, Pfact, Pfcoronin, and copy number of Pfpm2) were sequenced by Sanger method and quantitative PCR. On the Pfmdr1 gene, the mutation 86Y combined with 184F led to more susceptible isolates to MB (8.0 nM vs. 11.6 nM, p = 0.03). Concerning Pfmdr6, the isolates bearing 12 Asn repetitions were more susceptible to MB (4.6 nM vs. 11.6 nM, p = 0.005). None of the polymorphisms previously described as involved in antimalarial drug resistance was shown to be associated with reduced susceptibility to MB. Some genes (particularly PfK13, Pfugt, Pfact, Pfpm2) did not present enough genetic variability to draw conclusions about their involvement in reduced susceptibility to MB. None of the polymorphisms analyzed by multiple correspondence analysis (MCA) had an impact on the MB susceptibility of the samples successfully included in the analysis. It seems that there is no in vitro cross-resistance between MB and commonly used antimalarial drugs.


2020 ◽  
Author(s):  
Michael Fokuo Ofori ◽  
Emma E. Kploanyi ◽  
Benedicta A. Mensah ◽  
Emmanuel K. Dickson ◽  
Eric Kyei Baafour ◽  
...  

Abstract Background: Malaria continues to be a major health issue globally with nine out of ten cases reported in Africa. Although the current artemisinin derived combination therapies in Ghana are still efficacious against the Plasmodium falciparum parasite, compounding evidence of artemisinin and amodiaquine resistance in the African region establish the need for a full, up-to-date understanding and monitoring of antimalarial resistance to provide evidence for planning control strategies.Methods: The study was cross-sectional and was conducted during the peak transmission seasons of 2015, 2016, and 2017 in two study sites located in different ecological zones of Ghana involving children aged 0.5-14 years presenting with symptomatic uncomplicated Plasmodium falciparum (Pf) malaria with parasitaemia greater than 1000 parasites/µl of blood. Using in vitro 4-,6-diamidino-2-phenylindole (DAPI) drug sensitivity assays, 328 Pf parasites collected were used to investigate susceptibility to five selected antimalarial drugs: chloroquine, amodiaquine, dihydroartemisinin, artesunate and mefloquine.Results: The geometric mean B (GMIC50) of five drugs against the parasites collected from Cape Coast were 9.6, 23.6, 9.1, 3.5 and 8.1nM for chloroquine, amodiaquine, artemisinin, artesunate, and mefloquine respectively in 2015. There was a 2 fold increase in the GMIC50 levels of all the drugs against the isolates collected in 2016 as compared to the 2015 data from Cape Coast .The a of the five drugs against the parasites collected from Cape Coast were significantly higher than those isolates collected from Begoro in 2016 and 2017 (P<0.001) . The chloroquine resistance ranged between 1.9% and 9.1% among isolates collected from Cape Coast but remained 0% in Begoro over the period. High amodiaquine resistance levels were recorded at both sites whilst that of artesunate resistance ranged between 4 and 10% over the study period.Conclusions: The study has assessed the antimalarial drug sensitivities of Ghanaian Pf isolates collected over 3 consecutive years. The parasites showed variable resistance levels to all the drugs used over the period. The study has demonstrated the continual return of chloroquine-sensitive parasites. The in vitro DAPI assay is a useful method for monitoring individual drugs used in combinations in Ghana for the generation of data on their sensitivities over time.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Bethel Kwansa-Bentum ◽  
Kojo Agyeman ◽  
Jeffrey Larbi-Akor ◽  
Claudia Anyigba ◽  
Regina Appiah-Opong

Background. Malaria is one of the most important life-threatening infectious diseases in the tropics. In spite of the effectiveness of artemisinin-based combination therapy, reports on reduced sensitivity of the parasite to artemisinin in Cambodia and Thailand warrants screening for new potential antimalarial drugs for future use. Ghanaian herbalists claim that Polyalthia longifolia has antimalarial activity. Therefore, antiplasmodial activity, cytotoxic effects, and antioxidant and phytochemical properties of P. longifolia leaf extract were investigated in this study. Methodology/Principal Findings. Aqueous, 70% hydroethanolic and ethyl acetate leaf extracts were prepared using standard procedures. Antiplasmodial activity was assessed in vitro by using chloroquine-sensitive malaria parasite strain NF54. The SYBR® Green and tetrazolium-based calorimetric assays were used to measure parasite growth inhibition and cytotoxicity, respectively, after extract treatment. Total antioxidant activity was evaluated using a free radical scavenging assay. Results obtained showed that extracts protected red blood cells against Plasmodium falciparum mediated damage. Fifty percent inhibitory concentration (IC50) values were 24.0±1.08 μg/ml, 22.5±0.12 μg/ml, and 9.5±0.69 μg/ml for aqueous, hydroethanolic, and ethyl acetate extracts, respectively. Flavonoids, tannins, and saponins were present in the hydroethanolic extract, whereas only the latter was observed in the aqueous extract. Aqueous and hydroethanolic extracts showed stronger antioxidant activities compared to the ethyl acetate extract. Conclusions/Significance. The extracts of P. longifolia have antiplasmodial properties and low toxicities to human red blood cells. The extracts could be developed as useful alternatives to antimalarial drugs. These results support claims of the herbalists that decoctions of P. longifolia are useful antimalarial agents.


Sign in / Sign up

Export Citation Format

Share Document