Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm

2013 ◽  
Vol 39 (2) ◽  
pp. 138-151 ◽  
Author(s):  
Xin Niu ◽  
Yifang Ban
2022 ◽  
Vol 88 (1) ◽  
pp. 17-28
Author(s):  
Qing Ding ◽  
Zhenfeng Shao ◽  
Xiao Huang ◽  
Orhan Altan ◽  
Yewen Fan

Taking the Futian District as the research area, this study proposed an effective urban land cover mapping framework fusing optical and SAR data. To simplify the model complexity and improve the mapping results, various feature selection methods were compared and evaluated. The results showed that feature selection can eliminate irrelevant features, increase the mean correlation between features slightly, and improve the classification accuracy and computational efficiency significantly. The recursive feature elimination-support vector machine (RFE-SVM) model obtained the best results, with an overall accuracy of 89.17% and a kappa coefficient of 0.8695, respectively. In addition, this study proved that the fusion of optical and SAR data can effectively improve mapping and reduce the confusion between different land covers. The novelty of this study is with the insight into the merits of multi-source data fusion and feature selection in the land cover mapping process over complex urban environments, and to evaluate the performance differences between different feature selection methods.


2021 ◽  
Vol 10 (8) ◽  
pp. 533
Author(s):  
Bin Hu ◽  
Yongyang Xu ◽  
Xiao Huang ◽  
Qimin Cheng ◽  
Qing Ding ◽  
...  

Accurate land cover mapping is important for urban planning and management. Remote sensing data have been widely applied for urban land cover mapping. However, obtaining land cover classification via optical remote sensing data alone is difficult due to spectral confusion. To reduce the confusion between dark impervious surface and water, the Sentinel-1A Synthetic Aperture Rader (SAR) data are synergistically combined with the Sentinel-2B Multispectral Instrument (MSI) data. The novel support vector machine with composite kernels (SVM-CK) approach, which can exploit the spatial information, is proposed to process the combination of Sentinel-2B MSI and Sentinel-1A SAR data. The classification based on the fusion of Sentinel-2B and Sentinel-1A data yields an overall accuracy (OA) of 92.12% with a kappa coefficient (KA) of 0.89, superior to the classification results using Sentinel-2B MSI imagery and Sentinel-1A SAR imagery separately. The results indicate that the inclusion of Sentinel-1A SAR data to Sentinel-2B MSI data can improve the classification performance by reducing the confusion between built-up area and water. This study shows that the land cover classification can be improved by fusing Sentinel-2B and Sentinel-1A imagery.


Author(s):  
D. Amarsaikhan

Abstract. The aim of this research is to classify urban land cover types using an advanced classification method. As the input bands to the classification, the features derived from Landsat 8 and Sentinel 1A SAR data sets are used. To extract the reliable urban land cover information from the optical and SAR features, a rule-based classification algorithm that uses spatial thresholds defined from the contextual knowledge is constructed. The result of the constructed method is compared with the results of a standard classification technique and it indicates a higher accuracy. Overall, the study demonstrates that the multisource data sets can considerably improve the classification of urban land cover types and the rule-based method is a powerful tool to produce a reliable land cover map.


Sign in / Sign up

Export Citation Format

Share Document