USING MULTIVARIATE STATISTICAL METHODS TO ASSESS DRINKING WATER QUALITY FROM URBAN WATER SUPPLY IN IASI CITY, ROMANIA

Author(s):  
Iuliana Gabriela Gabriela
2010 ◽  
Vol 6 ◽  
pp. 52-55
Author(s):  
Esha Shrestha ◽  
Dwij R Bhatta ◽  
Binod Lekhak

Water-borne diseases are among the leading causes of morbidity and mortality in developing countries and around 2.2 million people die every year due to basic hygiene-related diseases, like gastroenteritis, diarrhea, typhoid and dysentery. Eighty-six water samples were randomly collected from urban water supply system of Kathmandu, and analyzed for physiochemical and microbiological parameters to assess drinking water quality. Residual chlorine was undetectable in 100% samples. Salmonella was detected in 4 samples by enrichment culture technique in Selenite F broth followed by plating on Salmonella-Shigella Agar. A total of 10 isolates were identified as Salmonella (S. Paratyphi, 10% and non-typhi, 90%) by conventional biochemical test. The majority of the isolates were susceptible to most of the antimicrobials tested; however, resistance was observed to amoxicillin (70%), cephalexin (20%) and ceftizoxime (14.28%). There was no significant relationship between coliform and Salmonella positivity (P = 0.366). The microbiological quality of urban water supply system is poor and indicates chances of outbreak of Salmonella infection. Key-words: drinking water quality; Nepal; water-borne disease; water pollution.DOI: 10.3126/botor.v6i0.2911 Botanica Orientalis - Journal of Plant Science (2009) 6: 52-55


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


2021 ◽  
Vol 15 (4) ◽  
pp. 168-176
Author(s):  
M. G. Daudova ◽  
R. B. Bagomedova ◽  
K. K. Bekshokov ◽  
M. M. Medzhidova ◽  
S. M. Nakhibashev ◽  
...  

Aim. Study of the influence of drinking water quality on the ecologically-dependent morbidity of the population of the Republic of Dagestan.Material and Methods. Methods of current and retrospective analysis of regional health indicators and methods of mathematical-statistical and medical-geographical analysis were used. Statistical processing of the results was carried out using the STATISTICA and Excel software packages. When carrying out laboratory studies on the quality of drinking water, we used a Lumex atomic absorption spectrometer "MGA-915MD".Results. Numerous hygiene studies indicate the direct impact of unsatisfactory drinking water quality on the health of a population. The relationship between sanitary and chemical indicators and the incidence rate for a number of nosological forms has been proven. It is generally accepted that human health is influenced by lifestyle factors (working, living and relaxation conditions), heredity and the ecological condition of the area of residence, including the quality of drinking water. Although it is not possible to differentiate the share of the negative effect caused by the consumption of poor quality drinking water but the incidence of certain nosological forms (cancer of the esophagus, gastrointestinal tract and kidney diseases) in the those regions of the Republic of Dagestan under consideration correlates with the characteristics of drinking water.Conclusion. The problem of pollution of water supply sources for the population in the dynamics of the long-term remains a priority concern. The quality and safety of drinking water are decreasing, which cannot but have a negative impact on public health. Correlation linkages between indicators of drinking water quality and oncological morbidity of the population were also established in indicators below the maximum permissible concentrations, which corresponds to a typical logistic model of causal relationships and serves as evidence of the high dependence of health disorders on chemical contamination of water supply sources. 


2013 ◽  
Vol 55 ◽  
pp. 82-92 ◽  
Author(s):  
Norbert Magyar ◽  
István Gábor Hatvani ◽  
Ilona Kovácsné Székely ◽  
Alois Herzig ◽  
Mária Dinka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document