scholarly journals AC/DC transfer standards calibration in Central Military Calibration Laboratory

2017 ◽  
Vol 66 (4) ◽  
pp. 217-228
Author(s):  
Przemysław Piróg ◽  
Mariusz Górecki

The article discusses the method used in the Central Military Calibration Laboratory to calibrate Fluke 5790 AC/DC transfer standard with reference transfer standard Fluke 792A. It presents the measurement equation and the uncertainty budget. The contribution of uncertainty components in the measurement uncertainty has been presented. The metrological traceability has been evaluated by comparing calibration results with the results in the last Fluke certificate of calibration. Keywords: AC/DC converters, AC/DC difference, thermal voltage converters (TVCs), AC voltage measurement.

2015 ◽  
Vol 34 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Federica Braga ◽  
Ilenia Infusino ◽  
Mauro Panteghini

Summary To be accurate and equivalent, laboratory results should be traceable to higher-order references. Furthermore, their quality should fulfill acceptable measurement uncertainty as defined to fit the intended clinical use. With this aim, in vitro diagnostics (IVD) manufacturers should define a calibration hierarchy to assign traceable values to their system calibrators and to fulfill during this process uncertainty limits for calibrators, which should represent a proportion of the uncertainty budget allowed for clinical laboratory results. It is therefore important that, on one hand, the laboratory profession clearly defines the clinically acceptable uncertainty for relevant tests and, on the other hand, endusers may know and verify how manufacturers have implemented the traceability of their calibrators and estimated the corresponding uncertainty. Important tools for IVD traceability surveillance are quality control programmes through the daily verification by clinical laboratories that control materials of analytical systems are in the manufacturer’s declared validation range [Internal Quality Control (IQC) component I] and the organization of Exter nal Quality Assessment Schemes meeting metrological criteria. In a separate way, clinical laboratories should also monitor the reliability of employed commercial systems through the IQC component II, devoted to estimation of the measurement uncertainty due to random effects, which includes analytical system imprecision together with individual laboratory performance in terms of variability.


Measurement ◽  
2019 ◽  
Vol 135 ◽  
pp. 180-188 ◽  
Author(s):  
Unai Mutilba ◽  
Alejandro Sandá ◽  
Ibon Vega ◽  
Eneko Gomez-Acedo ◽  
Ion Bengoetxea ◽  
...  

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 210
Author(s):  
Marco M. Schäck

For high-precision measurements of strain gauge-based transducers, 225 Hz carrier frequency measuring amplifiers are primarily used. The benefits of this carrier frequency method were discussed in previous publications. This publication shows the measurement uncertainty that can be achieved by calibrating an amplifier based on this method. Possibilities for improving the measurement uncertainty and the physical limit from the user's point of view are shown.


Author(s):  
D. Brynn Hibbert

One of the great revolutions in metrology in chemistry has been the understanding of the need to quote an appropriate measurement uncertainty with a result. For some time, a standard deviation determined under not particularly well-defined conditions was considered a reasonable adjunct to a measurement result, and multiplying by the appropriate Student’s t value gave the 95% confidence interval. But knowing that in a long run of experiments repeated under identical conditions 95% of the 95% confidence intervals would include the population mean did not answer the fundamental question of how good the result was. This became evident as international trade burgeoned and more and more discrepancies in measurement results and disagreements between trading partners came to light. To determine if two measurements of ostensibly the same measurand on the same material give results that are equivalent, they must be traceable to the same metrological reference and have stated measurement uncertainties. How to achieve that comparability is the subject of this chapter and the next. When making a chemical measurement by taking a certain amount of the test material, working it up in a form that can be analyzed, calibrating the instrument, and performing the measurement, analysts understand that there will be some doubt about the result. Contributions to uncertainty derive from each step in the analysis, and even from the basis on which the analysis is carried out. An uncertainty budget documents the history of the assessment of the measurement uncertainty of a result, and it is the outcome of the process of identifying and quantifying uncertainty. Although the client may only receive the fruits of this process as (value ± expanded uncertainty), accreditation to ISO/IEC 17025 requires the laboratory to document how the uncertainty is estimated. Estimates of plutonium sources highlight the importance of uncertainty. The International Atomic Energy Agency (IAEA) estimates there are about 700 tonnes of plutonium in the world. The uncertainty of measurement of plutonium is of the order of 0.1%, so even if all the plutonium were in one place, when analyzed the uncertainty would be 700 kg (1000 kg = 1 tonne). Seven kilograms of plutonium makes a reasonable bomb.


ACTA IMEKO ◽  
2017 ◽  
Vol 6 (4) ◽  
pp. 89
Author(s):  
Sebastian Baumgarten ◽  
Dirk Röske ◽  
Rolf Kumme

<p> </p><p><span style="font-family: Calibri;"><span style="font-size: small;">This paper present the completion and the measurement uncertainty budget of a multi-component measuring facility. The new facility is part of the 1 MN force standard machine [1] of the PTB. It enables the simultaneous generation of a torque in the range from 20 N·m to 2 kN·m in addition to axial forces 20 kN to 1 MN. This allows the characterization of measuring systems which require combined loads of axial forces <em>F</em></span><sub><span style="font-size: xx-small;">z</span></sub><span style="font-size: small;"> and torques <em>M</em></span><sub><span style="font-size: xx-small;">z</span></sub><span style="font-size: small;"> like friction coefficient sensors. The aim is a measurement uncertainty of (<em>k</em> = 2) for <em>M</em></span><sub><span style="font-size: xx-small;">z</span></sub><span style="font-size: small;"> &lt; 0.01 % and <em>F</em></span><sub><span style="font-size: xx-small;">z</span></sub><span style="font-size: small;"> &lt; 0.002 %. The physical model yields to extended measurement uncertainties (<em>k</em> = 2) for 20 N·m of 5.9·10</span><sup><span style="font-size: xx-small;">-5</span></sup><span style="font-size: small;"> and for the maximum load step <span><em>M</em></span><sub><span>z</span></sub> = (2000 ± 0.084) N·m.</span></span></p><p> </p>


Author(s):  
James B. Nystrom ◽  
Phillip S. Stacy

Flow meter performance is described by the dimensionless numbers of discharge coefficient and Reynolds number. To achieve the best flow measurement uncertainty, meters are tested (calibrated) to determine the discharge coefficient behavior versus Reynolds number (magnitude and slope). Various meter designs have differing Reynolds number dependence. In many cases calibration laboratories can not achieve the Reynolds number at which the flow meter will operate. This deficiency is usually due to fluid properties (density and viscosity) at operating conditions being considerably different than those in a water-based calibration laboratory. Testing using fluids such as natural gas may increase the achievable Reynolds number but it is difficult to achieve the low uncertainty of the discharge coefficient possible in a water calibration due to the additional uncertainty of the expansion factor required with compressible fluids and the problems associated with gravimetric measurements of compressible fluids. In some power industry applications, operating Reynolds numbers may be an order of magnitude higher than can be achieved during calibration. Therefore, calibration data must be used to infer the discharge coefficient at operating conditions (Reynolds number), defining extrapolation. In Code tests, minimum flow measurement uncertainty is the objective and the uncertainty must be estimated. The largest uncertainty component in a flow measurement application usually is the discharge coefficient, which is dependent on the care of fabrication, the calibration data, and the extrapolation process. Measured discharge coefficients of Throat Tap Nozzles, Venturi meters Wall Tap Nozzles, and Orifice Meters are compared to predictive equations.


Sign in / Sign up

Export Citation Format

Share Document